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O4: Development of wall conditioning 

procedures 
D12: Condition walls to enable plasmas with high density gradients 

necessary for high performance
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Overview

Wall conditioning enables

• longer (> 500 𝑚𝑠), high density (> 1020 𝑚−2) plasmas

• reduced impurity content and outgassing for improved density control and plasma performance

Outline

• Baking

• Glow Discharge conditioning

• Boronisation

• Electron Cyclotron Wall Conditioning (ECWC) with pulse trains

• ECWC with ultra short pulses

• Ion Cyclotron Wall Conditioning (ICWC)
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Baking of the plasma vessel

• Conducted as planned, some problems 

with heating up that have been overcome

• Pressure curve follows similar dependence 

as previous campaigns (≈ 𝑡−0.7)

• Lower final pressure (with longer plateau 

time)

OP2.2/2.3

• Following the same working scheme



W 7 - X  W O R K S H O P O P 2 . 1  R E S U LT SM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  L .  VA N Ó  |  2 7 . 11 . 2 0 2 3

4

Glow Discharge conditioning

• Less accumulated 𝐻 GDC before first plasma than 

in OP1.2b

• Plasma pulse length limited in the beginning of 

OP2.1 with too high impurity content in the walls. 

Subsequent 𝐻 GDC-s improved this, as expected

H GDC H GDC

OP2.2/2.3

• Similar scheme of long accumulated 𝐻 GDC time, with 𝐻𝑒

GDC afterwards, as well as in the morning of operation days 

when necessary

• Suggestion: longer 𝐻 GDC before first commissioning 

plasma
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Boronisation - Overview

OP2.1 5th OP2.1 4th OP2.1 3rd OP2.1 2nd OP2.1 1st

Accumulated active bor. phase 3:09 h 3:10 h 2:26 h 2:00 h 2:20 h

Total inj. gas during bor. phase 48 bar*l 38.08 bar*l ≈ 35.4 bar*l ≈ 6 bar*l ≈ 46 bar*l

Number of discharges 1 1 5 1 5

Estimated layer thickness 17.01 nm 13.56 nm 12.6 nm 2.14 nm 16.37 nm

OP1.2b 3rd OP1.2b 2nd OP1.2b 1st

Accumulated active bor. phase 5:00 h 5:30 h 3:30 h

Total inj. gas during bor. phase 51.25 bar*l 67.6 bar*l 29.4 bar*l

Estimated layer thickness 18.28 nm 24.12 nm 10.5 nm

• Boronisation conducted every ≈ 3000 𝑠 of plasma 

operation

• Layer thickness estimation with ρ𝑙 = 2.4 𝑔 𝑐𝑚−3

• Boronising scheme of OP1.2b resulted in sudden 

discharge termination

 Parameters adjusted for stable discharge

• Stable discharge achieved with

• 𝑝 < 8.5 ∗ 10−3 𝑚𝑏𝑎𝑟

• 𝐼 = 0.8 𝐴

• 𝐻2 − 𝐻𝑒 cleaning discharge beforehand
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Boronisation – Sample exposure

Conducted experiments

• Using the Multi-Purpose Manipulator (MPM)

• During 3rd and 4th boronisation

• Samples: 𝐶 (fine-grain graphite) polished and unpolished, 𝐴𝑙, 𝐶𝑢, 𝑊

• Evaluation using Nuclear reaction analysis (NRA)
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Results of analysis

• Boron deposition:

10 − 15 𝑛𝑚 (3rd), 5 − 7 𝑛𝑚 (4th)

• No material dependence

• 𝑂 and 𝐶 on sample probably from air exposure

• Question: lifetime of boron layers?

Further experiments in OP2.2/2.3

• Further sample exposure is desirable

• To provide individual measurement of added 

boron layer

• To extend the analysis

• Sample exposure during GDC

[C. Killer, D. Cipciar]

[M. Mayer, C. P. Dhard]
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Boronisation – Effects on plasma

• After 1st boronisation:

• Density limit increased due to the 

decreased impurity radiation at the edge, 

operation above 1020 𝑚−2 possible

• Reduced 𝑂 and 𝐶 levels

• Further boronisations needed to bind and coat 

the 𝑂 and 𝐶 redistributed from the strikelines.

For OP2.2/2.3

• Continue with same parameter range for 

boronising discharge

• Frequency and gas input of boronisations to be 

revised?

• No drop in plasma performance after a weak 

boronisation

• Desired gas input: 35 − 48 𝑏𝑎𝑟 ∗ 𝑙

• Gas input during 2nd: 6 𝑏𝑎𝑟 ∗ 𝑙
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ECWC with pulse trains

• Used when the wall is saturated with fuelling 

gas and density control is lost

• 𝐻 or 𝐻𝑒 pulse trains depending on fuelling gas 

to minimize dilution

• Succesful pulse train when line integrated 

density reached < 1 − 1.5 ∗ 1019 𝑚−2

• Pulse train optimisation to make the train as 

short as possible with maximum efficiency to 

save time for the main physics program

• Systematic study on pulse length, pulse 

interval, input power, gas prefill, nr of 

pulses

OP2.2/2.3

• Follow similar working scheme

• Taking into account results of available 

systematic optimisation study

[A. Goriaev]

[O. Grulke]



W 7 - X  W O R K S H O P O P 2 . 1  R E S U LT SM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  L .  VA N Ó  |  2 7 . 11 . 2 0 2 3

9

ECWC with ultra short pulses

H2 P0 = 1.1×10-3 Pa, Δt1≈ Δt2 ≈ Δt3 ≈100 ms

Conducted experiments

• High energy 𝐻 neutrals (avoid full gas ionization)

• Provide plasma neutralization through 

recombination

Results

• Ultra-short pulses produce partially ionized 

plasma, hot electrons are in minority

• Pulses are stable in series

• Plasma decay time is shorter than the particle 

confinement time

Further experiments in OP2.2/2.3

• To do pulse length – gas pressure optimization

• To see impact on wall conditions (removing 

particles from surface) with the developed 

optimum scenario 

H-I @ 121.5670 nm

[V. E. Moiseenko, Y. V. Kovtun]
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ICWC

[V. E. Moiseenko, Y. V. Kovtun]

Experiments

• Low magnetic field (0.1 − 0.5 𝑇), high density 

(1018 𝑚−3), low temperature ICRH discharges

• Suitable for wall conditioning (removing particles from 

surface)

• LHD experiment demonstrates availability of these 

type of discharges (reliable gas breakdown)

• At W7-X, the first attempt to produce a similar 

discharge (ω > ω𝑐𝑖 regime, but still low density) 

demonstrated the principal possibility

Further experiments in OP2.2/2.3

• To further explore this regime and its wall conditioning 

properties

(LHD)

Dashed dotted lines: switch -on and -off gas puff. B0 = 0.5 T.

Neutral gas pressure
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Summary

Base wall conditioning: conducted as planned, to be repeated in OP2.2/2.3

• Baking

• Glow discharge

• Boronisation - frequency and gas input of boronisations to be discussed

Wall conditioning during plasma operation with magnetic field:

• ECRH pulse trains worked reliably, systematic study to be done, to be repeated in OP2.2/2.3

• Ultra short ECRH pulses demonstrated, to be tested for wall conditioning in OP2.2/2.3

• Low magnetic field ICRH pulses demonstrated, to be tested for wall conditioning in OP2.2/2.3

D12: Condition walls to enable plasmas with high density gradients necessary for high performance

• Limited NBI operation limited the availability of these high performance plasmas

• Aim to maximize the pumping capacity of the wall (instead of acting like an uncontrolled source)

• ECRH pulse trains are a good start for this aim

• The efficiency of other desaturation methods (e.g. ultra short ECRH blips, ICWC) need to be systematically 

explored in combination with pulse trains
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Backup - Estimation of thickness of boron layer

• Assuming all injected boron gets deposited

• Not taking into account lower decompising 

rate in the beginning of boronising phase

• Cracking factor: 𝑓𝑐𝑟 = 1

• Fraction of the precursor gas in the mixture: 𝐹𝑝𝑟𝑒𝑐 = 0.1

• Number of B atoms in a precursor gas molecule: 𝑛𝑚𝑜𝑙 = 2

• Molar mass of B: 𝑀𝐵

• Amount of injected gas during boronising phase: 𝑄𝑖𝑛𝑗

• Molar volume of ideal gas: 𝑉𝑚

• Average density of an amorphous B layer: 𝜌𝑙

• Total area of coated PFCc: 𝑆
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Backup - Impurity levels during the boronising discharge

Nuclear reaction analysis (NRA)

• 3 MeV 3He+

• Reactions: 
10,11B(3He,px)

12,13C
12C(3He,p0,1,2)

14N
16O(3He,p0)

18F

• 2 detectors at 135°

- 30 msr, good resolution

- 80 msr, medium resolution

Channel
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Backup - Optimising the boronising discharge

1A 1.3A 1.5A 1.7A 1.3A • Fluctuations in electrode voltage, 

downspikes in floating voltage

 Indicates impurity presence [AUG]

• Increased fluctuations at 𝑝 > 10−2 𝑚𝑏𝑎𝑟

• 𝑈 − 𝐼 − 𝑝 characteristic done with 𝐻2 −

𝐻𝑒 mixture glow discharge to simulate 

boronising discharge



W 7 - X  W O R K S H O P O P 2 . 1  R E S U LT SM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  L .  VA N Ó  |  2 7 . 11 . 2 0 2 3 1 5

Backup - Optimising the boronising discharge

• Adjusted parameter range:

• 𝑝 < 8.5 ∗ 10−3 𝑚𝑏𝑎𝑟

• 𝐼 = 0.8 𝐴

• Cleaning effects of 𝐻2 − 𝐻𝑒 glow 

discharge possibly contributed

 Repeated for last boronisation
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Backup - Impurity levels during the boronising discharge
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Backup - Outgassing trend

• No significant effect on outgassing trend from 

boronisations, high scattering remains

• Baseline lower than in OP1.2b due to actively cooled 

divertor and possibly to change in divertor material

• Not trend observable in impurity outgassing level from 

ref. discharges

[A. Goriaev]
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Backup - Proposals

Base wall conditioning:

• Agor_006: Evaluation of wall conditioning evolution throughout experimental campaign via reference discharges

• Agor_004: Initial wall conditioning for OP2.1 and OP2.2 (baking and glow discharge)

• Dhard_026: Boronization of W7-X plasma-facing components during OP2.1 and OP2.2d

• Erwa_007: Comparison of wall condition before and after boronization

• Mam_002: Boron deposition during boronizations (sample exp.)

• Dhard_014: Exposure of W/W-alloy and other material samples during WC using mid-plane manipulator (sample exp.)

• Mam_003: Carbon erosion during glow discharge cleaning (sample exp.)

• Suma_006: Effects of wall conditioning discharges on plasma facing materials in W7-X (sample exp. From Japan)
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Backup - Proposals

ECWC and ICWC:

• Agor_005: Electron Cyclotron Wall Conditioning development (pulse trains)

• Din_018: Electron Cyclotron Wall Conditioning (ECWC) development (pulse trains)

• Dhard_016: Tests and optimization of Ion Cyclotron wall conditioning (ICWC)

• Din_019: Scenarios of pulsed ECRH and ICRH wall conditioning in hydrogen (ultra short ECRH blips, low B ICRH pulses)

• Moiseenk_002: Scenarios of pulsed ECRH and ICRH wall conditioning in hydrogen

• Dhard_025: Optimization of synergy between Ion Cyclotron and Electron Cyclotron wall conditioning in W7-X (piggyback)

• Roblu_001: Classification of conditioning effectiveness utilizing particulate injections

• Roblu_002: Boron particulate injection into alternate magnetic configurations for material integration assessment


