

- Disclaimer: many proposals dealing with edge modeling validation can also be discussed in the framework of other deliverables in this workshop! Below is just a sample of relevant proposals.
- alkn_003 Characterization of edge topology and PFC heatload analysis in high current scenarios
- alkn_004 Beta effects on edge topology and PFC heatloads in paradigm configurations
- caki_017 Destabilization of detachment in standard configuration
- caki_018 Validation of transport models using new spectroscopic fluctuation measurements
- ebf_002 Profile diagnostics exploitation for SOL and upstream characterization
- flr_004 Validation of numerical modelling of edge transport and exhaust
- geiger_006, Change of boundary topology and heatload distribution with β
- sxu_001,002 β effects on detachment threshold and edge impurity transport -> shifted to OP2.2
- tid_003 Impurity transport studies using 15N injections -> shifted to OP2.2

008.009

• Disclaimer: many proposals dealing with edge modeling validation can also be discussed in the framework of many other deliverables in this workshop! Below is just a sample of relevant proposals.

alkn_003 Characterization of edge topology and PFC heatload analysis in high current scenarios

alkn_004 Beta effects on edge topology and PFC heatloads in paradigm configurations

- caki_017 Destabilization of detachment in standard configuration
- caki_018 Validation of transport models using new spectroscopic fluctuation measurements
- ebf_002 Profile diagnostics exploitation for SOL and upstream characterization
- flr_004 Validation of numerical modelling of edge transport and exhaust

geiger_006, Change of boundary topology and heatload distribution with β 008, 009

- sxu_001,002 β effects on detachment threshold and edge impurity transport -> shifted to OP2.2
- tid_003 Impurity transport studies using 15N injections -> shifted to OP2.2

Field line diffusion/EMC3-Lite/ HINT/ VMEC + Extender validation

- Disclaimer: many proposals dealing with edge modeling validation can also be discussed in the framework of many other deliverables in this workshop! Below is just a sample of relevant proposals.
- alkn_003 Characterization of edge topology and PFC heatload analysis in high current scenarios
- alkn_004 Beta effects on edge topology and PFC heatloads in paradigm configurations
- caki_017 Destabilization of detachment in standard configuration
- caki_018 Validation of transport models using new spectroscopic fluctuation measurements EMC3-Eirene
- ebf_002 Profile diagnostics exploitation for SOL and upstream characterization
- flr_004 Validation of numerical modelling of edge transport and exhaust
- geiger_006, Change of boundary topology and heatload distribution with β
- sxu_001,002 β effects on detachment threshold and edge impurity transport -> shifted to OP2.2
- tid_003 Impurity transport studies using 15N injections -> shifted to OP2.2

008.009

validation

- Disclaimer: many proposals dealing with edge modeling validation can also be discussed in the framework of many other deliverables in this workshop! Below is just a sample of relevant proposals.
- alkn_003 Characterization of edge topology and PFC heatload analysis in high current scenarios
- alkn_004 Beta effects on edge topology and PFC heatloads in paradigm configurations
- caki_017 Destabilization of detachment in standard configuration
- caki_018 Validation of transport models using new spectroscopic fluctuation measurements
- ebf_002 Profile diagnostics exploitation for SOL and upstream characterization
- flr_004 Validation of numerical modelling of edge transport and exhaust
- geiger_006, Change of boundary topology and heatload distribution with β
- sxu_001,002 β effects on detachment threshold and edge impurity transport -> shifted to OP2.2
- tid_003 Impurity transport studies using 15N injections -> shifted to OP2.2

ERO2.0/ WallDyn3D validation

008.009

FLD calculations from HINT equilbria show β effects on heatload distribution, but at lower β than expected

Courtesy: A. Knieps

Anisotr. Diffusion prediction

IR cameras show similar trend as simulations predict, but changes might happen at lower beta than expected (profile analysis pending for proper on-axis beta calculation) 5 upper 5 lower

20230131.040

 $20230131.054 (\beta_{vol} \approx 0.5\%)$

Divertor IR observations at 4 s

Courtesy: N. Maaziz, E. R. Flom

Wendelstei

- Experimental He-beam profiles from OP2.1 were compared in detail to EMC3-Eirene modeling results.
 - Multiple He-beam profiles averaged under similar conditions (20230117.51 & 52) – noise reduction
- Detailed assessment on the impact of the choice of anomalous parameters on T_e , n_e profiles

E. Flom et al 2023 Nuclear Fusion - Submitted

Courtesy: N. Maaziz, E. R. Flom

- Experimental He-beam profiles from OP2.1 were compared in detail to EMC3-Eirene modeling results.
 - Multiple He-beam profiles averaged under similar conditions (20230117.51 & 52) – noise reduction
- Detailed assessment on the impact of the choice of anomalous parameters on T_e , n_e profiles

Courtesy: N. Maaziz, E. R. Flom

- Density fall-off length requires very low anomalous diffusion coefficients
 - $D = 0.15 \text{ m}^2 \text{s}^{-1}$
 - Consistent with MPM measurements^[1] ✓
- Assuming anomalous heat diffusion $\chi_{\perp} = 3D_{\perp}$ leads to large overestimations of T_e at LCFS
 - $\chi_{\perp} = 10 D_{\perp}$ matches both T_e and n_e fall-off lengths \checkmark

- Density fall-off length requires very low anomalous diffusion coefficients
 - $D = 0.15 \text{ m}^2 \text{s}^{-1}$
 - Consistent with MPM measurements^[1] ✓
- Assuming anomalous heat diffusion $\chi_{\perp} = 3D_{\perp}$ leads to large overestimations of T_e at LCFS
 - $\chi_{\perp} = 10 D_{\perp}$ matches both T_e and n_e fall-off lengths \checkmark
- Hollowness in confined island region not captured using uniform transport coefficients^[2] X

- Density fall-off length requires very low anomalous diffusion coefficients
 - $D = 0.15 \text{ m}^2 \text{s}^{-1}$
 - Consistent with MPM measurements^[1] ✓
- Assuming anomalous heat diffusion $\chi_{\perp} = 3D_{\perp}$ leads to large overestimations of T_e at LCFS
 - $\chi_{\perp} = 10 D_{\perp}$ matches both T_e and n_e fall-off lengths \checkmark
- Hollowness in confined island region not captured using uniform transport coefficients X
- Reducing χ_{\perp} by a factor 100 inside confined island region leads to a similar hollow T_e profile measured by He-beam

[1] C. Killer et al, *Nucl. Fusion* **61** (2021) 096038 [2] E. R. Flom et al, *Nucl. Fusion* (submitted)

Courtesy: N. Maaziz, E. R. Flom

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | V R WINTERS | 27.11.2023

EMC3-Eirene validation: effect of control coil current on density build-up

 Ratio of ||- to ⊥- transport is highly sensitive to the magnetic field line pitch, Θ, within the island^[3]:

$$\Theta = 2a \sqrt{\frac{\iota' b_{rm}}{Rm}}$$

- b_{rm} is the radial resonant field component (increases w/ $+I_{cc}$)
 - → Larger Γ_{recyc} to target (predicted by EMC3-Eirene) for + I_{cc} (at low f_{rad})

EMC3-Eirene validation: effect of control coil current on density build-up

 Ratio of ||- to ⊥- transport is highly sensitive to the magnetic field line pitch, Θ, within the island^[3]:

$$\Theta = 2a \sqrt{\frac{\iota' b_{rm}}{Rm}}$$

- b_{rm} is the radial resonant field component (increases w/ + I_{cc})
 - → Larger Γ_{recyc} to target (predicted by EMC3-Eirene) for + I_{cc} (at low f_{rad})
- No direct downstream density measurements at strikeline in OP2.1 with *I_{cc}* (LPs, H-alpha were not yet ready)
- But: we may have some indirect indications!

EMC3-Eirene validation: effect of control coil current on density build-up

 Ratio of ||- to ⊥- transport is highly sensitive to the magnetic field line pitch, Θ, within the island^[3]:

$$\Theta = 2a \sqrt{\frac{\iota' b_{rm}}{Rm}}$$

- b_{rm} is the radial resonant field component (increases w/ $+I_{cc}$)
 - → Larger Γ_{recyc} to target (predicted by EMC3-Eirene) for + I_{cc} (at low f_{rad})
- No direct downstream density measurements at strikeline in OP2.1 with *I*_{cc} (LPs, H-alpha were not yet ready)
- But: we may have some indirect indications!

- Carbon source = $Y_{chem}\Gamma_{recyc}$
- If we assume divertor retention is similar for all *I*_{cc}:

 $\rightarrow n_{c,CXRS} \propto \Gamma_{recyc}$ at a given $n_{separatrix}$

EMC3-Eirene validation: effect of control coil current on density build-up

 Ratio of ||- to ⊥- transport is highly sensitive to the magnetic field line pitch, Θ , within the island^[3]:

$$\Theta = 2a \sqrt{\frac{\iota' b_{rm}}{Rm}}$$

- Carbon source = $Y_{chem}\Gamma_{recyc}$
- If we assume divertor retention is similar for all *I_{cc}*:

 $\rightarrow n_{c.CXRS} \propto \Gamma_{recvc}$ at a given $n_{sevaratrix}$

EMC3-Eirene validation: effect of control coil current on density build-up EMC3, $P_{in} = 5$ MW, $D = 0.5 \chi = 1.5D$

EMC3-Eirene validation: what is our downstream density??

- Divertor Langmuir Probes consistently measure lower n_e than spectroscopic techniques
 - \rightarrow large difference: factor of 5 to 10!
 - → spectroscopic measurements agree more with EMC3-Eirene calculations

Wendelsteir

EMC3-Eirene validation: what is our downstream density??

- Divertor Langmuir Probes consistently measure lower n_e than spectroscopic techniques
 - \rightarrow large difference: factor of 5 to 10!
 - → spectroscopic measurements agree more with EMC3-Eirene calculations

- However: pop-up LPs are consistent to previous OP1.2 measurements
- These discrepancies should be investigated in the next campaign!

Wendelsteir

EMC3-Eirene validation: Radiation pattern shows consistency, but some qualitative differences remain

Wendelste

EMC3-Eirene validation: Radiation pattern shows consistency,

but some qualitative differences remain

Wendelstein 7-X

EMC3-Eirene validation: Radiation pattern shows consistency, but some qualitative differences remain

Wendelstein 7-X

EMC3-Eirene validation: Radiation pattern shows consistency, but some qualitative differences remain

Topics which I will not get into, but are nonetheless important

- Up/down asymmetries in the target heat load pattern, likely due to drifts (D. M. Kriete talk, TF-III)
 - Mismatch in toroidal distribution of strike line width in EMC3-Eirene (see: D. Bold Nucl. Fusion 62 (2022) for OP1.2b analysis)
- Validation of toroidal current/control coil current effects on heat load pattern (Y. Gao talk TF-II, also see: Y. Gao Nucl. Fusion 59 (2019))
- Local validation EMC3-Eirene results of impurity fractional abundance/transport effects in the divertor (F. Henke, D. Gradic talk TF-II)
- EMC3-Eirene validation of neutral transport and pumping in the subdivertor region (see: D. Boeyaert *PPCF* (2023) accepted for OP1.2b analysis)
- Effects of error fields on local comparison to EMC3-Eirene modeling

How should we move forward in OP2.2?

- Overall, we have seen that our edge codes can reproduce gross, qualitative features observed in experiment
- However, detailed matching (profiles, radiation patterns) remains elusive
 - Detailed matches (via non-uniform transport coefficients, etc.) might be masking missing physics we must be careful in our conclusions here
- Significant SOL characterization was not possible in OP2.1 (lack of import SOL diagnostics! Divertor LPs, H-alpha cameras, Alkali metal beam, etc)
 - New proposal should be developed to obtain as consistent as possible SOL characterization
- Imperative: code development must be prioritized!
 - EMC3-Eirene inclusion of drifts
 - Further development of 3D SOL turbulence codes (BOUT++, GENE-X, GRILLIX ...)
 - Simultaneous development of non-MC based SOL fluid codes (e.g. BOUT++ → D. Bold)