

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 -EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

0

0

0 0 0

0

Impurity Transport Team

C.D. Beidler¹, D. Bold¹, C. Brandt¹, R. Bussiahn¹, B. Buttenschön¹, A. Demby¹, R. De Wolf⁸, Y. Feng¹, O. Ford¹, T. Fornal⁶, J.M. García-Regaña², B. Geiger⁴, T. Gonda³, M. Gruca⁶, F. Henke¹, M. Kriete³, I. Ksiazek⁶, M. Kubkowska⁶, A. Langenberg¹, N. Mazziz¹, K. McCarthy², N. Pablant⁷, G. Partesotti¹, V. Perseo¹, P. Pölöskei¹, T. Romba¹, D. Medina Roque², H. Smith¹, C. Swee⁴, N. Tamura⁵, A. Tsikouras¹, T. Tork¹, J.L. Velasco², Th. Wegner¹, N. Wendler⁶, V. Winters¹, D. Zhang¹, A. Zocco¹ and W7-X Team

¹Max-Planck Institut für Plasmaphysik, Greifswald, Germany
²Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain
³Auburn University, Auburn, AL, USA
⁴University of Wisconsin, Madison, WI, USA
⁵National Institute for Fusion Science, Toki, Japan
⁶Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
⁷Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
⁸KU Leuven, Leuven, Belgium

Impurities:

Core

- Impurity accumulation database & scaling (TFI)
- Transport characterization (TFIII)
- Profile characterization (TFI+III)
- Validation of neoclassic (TFIII)

Edge

- Enrichment (low- & high-Z) (TFII)
- Tungsten transport (TFII)

Radiation:

- Radiation asymmetries (TFIII)
- Detachment access & control (TFII+III)

Core impurity transport

F. Reimold TF I

T. Romba TF III

Edge impurity transport

M. Kriete TF III

V. Winters TF III

Radiation

G. Partesotti TF III

Achievements:

- New or standard operation of non-stationary impurity diagnostics:
 - Many LBO (100's) & TESEPEL (10's) injections
 → database approach & survey
 - He-puff modulation established, LBO-modulation pending
 → detailed transport analysis
- New diagnostic & analysis approaches:
 - Regular CXRS profile measurements & transport analysis (to be developed for blips)
 - CXRS high-n Rydberg approach for high(er)-Z element
 - New CIS-based diagnostic: CICERS (2D-profiles of n_{imp})

 \rightarrow see TFIII talk by T. Romba

Wendelste

Challenges:

- Data of limited use for quantitative analysis due to diagnostic issues (HEXOS, HR-XIS/XICS)
- Some recovery possible with additional effort:

Bolometry, Spectroscopy, XMCTS, Zeff

- Qualitative analysis (transport time) is possible for database approaches
- Need for impurity accumulation proxy (HEXOS, Bolometer, Zeff)

Impurity transport in regular ECRH scenarios is turbulent transport dominated (timescale & species-dependence)

- No strong sign of mag. configuration dependence
- No (strong) accumulation (database analysis pending)

Impurities accumulate in improved performance scenarios

- Low density, freshly boronized; Impurity injection; Pure NBI In pure NBI:
- Transport timescale not strongly dependent on mag. configuration
- Impurity peaking species dependent (Z-scaling)

Actuators to reduce impurity accumulation

- (Sufficient) ECRH
- Gas puff (low density, freshly boronized)

T. Wegner JPP 89 (2023)

 \rightarrow see TFIII talk by T. Romba

Impurity transport in regular ECRH scenarios is turbulent transport dominated (timescale & species-dependence)

- No strong sign of mag. configuration dependence
- No (strong) accumulation (database analysis pending) ٠

Impurities accumulate in improved performance scenarios

- Low density, freshly boronized; Impurity injection; Pure NBI In pure NBI:
- Pure NBI Transport timescale not strongly dependent on mag. configuration
- Impurity peaking species dependent (Z-scaling)

Actuators to reduce impurity accumulation

- (Sufficient) ECRH
- Gas puff (low density, freshly boronized)

Impurity transport in regular ECRH scenarios is turbulent transport dominated (timescale & species-dependence)

- No strong sign of mag. configuration dependence
- No (strong) accumulation (database analysis pending) ٠

Impurities accumulate in improved performance scenarios

- Low density, freshly boronized; Impurity injection; Pure NBI In pure NBI:
- Pure NBI Transport timescale not strongly dependent on mag. configuration
- Impurity peaking species dependent (Z-scaling)

Actuators to reduce impurity accumulation

- (Sufficient) ECRH
- Gas puff (low density, freshly boronized)

Impurity transport in regular ECRH scenarios is turbulent transport dominated (timescale & species-dependence)

- No strong sign of mag. configuration dependence
- No (strong) accumulation (database analysis pending)

Impurities accumulate in improved performance scenarios

- Low density, freshly boronized; Impurity injection; <u>Pure NBI</u>
 In pure NBI:
- Transport timescale not strongly dependent on mag. configuration
- Impurity peaking species dependent (Z-scaling)

Actuators to reduce impurity accumulation

- (Sufficient) ECRH
- Gas puff (low density, freshly boronized)

Density peaking in NBI-heated experiments

Impurity transport in regular ECRH scenarios is turbulent transport dominated (timescale & species-dependence)

- No strong sign of mag. configuration dependence
- No (strong) accumulation (database analysis pending)

Impurities accumulate in improved performance scenarios

- Low density, freshly boronized; Impurity injection; <u>Pure NBI</u>
 In pure NBI:
- Transport timescale not strongly dependent on mag. configuration
- Impurity peaking species dependent (Z-scaling)

Actuators to reduce impurity accumulation

- (Sufficient) ECRH
- Gas puff (low density, freshly boronized)

Impurity transport in regular ECRH scenarios is turbulent transport dominated (timescale & species-dependence)

- No strong sign of mag. configuration dependence
- No (strong) accumulation (database analysis pending)

Impurities accumulate in improved performance scenarios

- Low density, freshly boronized; Impurity injection; <u>Pure NBI</u>
 In pure NBI:
- Transport timescale not strongly dependent on mag. configuration
- Impurity peaking species dependent (Z-scaling)

Actuators to reduce impurity accumulation

- (Sufficient) ECRH
- Gas puff (low density, freshly boronized)

Courtesy of T. Romba

Impurity transport in regular ECRH scenarios is turbulent transport dominated (timescale & species-dependence)

- No strong sign of mag. configuration dependence
- No (strong) accumulation (database analysis pending)

Impurities accumulate in improved performance scenarios

- Low density, freshly boronized; Impurity injection; Pure NBI In pure NBI:
- Transport timescale not strongly dependent on mag. configuration
- Impurity peaking species dependent (Z-scaling)

Actuators to reduce impurity accumulation

- (Sufficient) ECRH
- Gas puff (low density, freshly boronized)

Core accumulation of W

aenerated Tue Iul 18 18:10:02 2023 - version 3.0 - contact: astechow@ipp.mpa.de - data missina: ['bremsstrahluna'. 'halpha'. 'lCRH'. 'total dive

Important:

Impurity transport is NO safety issue

Influence of impurities on turbulent transport

- Progress in modeling tools and analysis (Stella, GENE, Euterpe)
 - First analysis of impurity transport in accumulating conditions still inconclusive
 - Impact of non-trace impurities on turbulence predicted
 - Detailed modeling datasets prepared
- Impurity transport can be optimized
 - Transport level optimization
 - Outward directed convection
 - → temperature screening

Progress in theoretical understanding & optimization

• Influence of impurities on turbulent transport

- Progress in modeling tools and analysis (Stella, GENE, Euterpe)
 - First analysis of impurity transport in accumulating conditions still inconclusive
 - Impact of non-trace impurities on turbulence predicted
 - Detailed modeling datasets prepared
- Impurity transport can be optimized
 - Transport level optimization
 - Outward directed convection
 - → temperature screening

Fundamental challenges for core impurity transport

At the moment we cannot attain fully reactor-relevant conditions in W7-X Instead we should focus on:

- \rightarrow Database approach to identify special conditions & critical parameters
- Transport suppression & scaling
- Separation of impurities vs. main ions vs. heat

\rightarrow High quality experimental data for modeling validation

- Characteristic conditions
- Complete experimental dataset
- High fidelity impurity transport analysis
- High fidelity modeling (GK)

→ Development of faster models (QL) for predictions & new scenarios to validate (NC) required

Expect more reliable operation

Diagnostic availability NBI-heating & blips for CXRS

Encourage to include impurity tracers !

Most often not perturbative *With/without NBI:*

• LBO & TESPEL

With NBI (!!):

- Gas puff modulation (He, Ne)
- Ne/Ar tracer puff

Operational regimes/parameters to be explored

- Low collisionality conditions (P/n limit!)
- Mirror-scan at low collisionality

New diagnostic developments in O2.1

- Puff modulation CXRS measurements
- Fast CXRS with high-n Rydberg lines (highZ)
- CIS-based CXRS (CICERS)
- CO-Monitor is commissioned
- Additional capabilities for HR-XIS (W-lines)

New diagnostic developments in O2.2

- HEXOS & HR-XIS back in operation
- UV-vis complement to HEXOS
- Improved CICERS & NBI availability (blips)
- Improved gas seeding capabilities
- Imp. density fluctuation measurements (scoping study)

Expect more reliable operation

Diagnostic availability NBI-heating & blips for CXRS

Encourage to include impurity tracers !

Most often not perturbative With/without NBI:

• LBO & TESPEL

With NBI (!!):

- Gas puff modulation (He, Ne)
- Ne/Ar tracer puff

Operational regimes/parameters to be explored

- Low collisionality conditions (P/n limit!)
- Mirror-scan at low collisionality

New diagnostic developments in O2.1

- Puff modulation CXRS measurements
- Fast CXRS with high-n Rydberg lines (highZ)
- CIS-based CXRS (CICERS)
- CO-Monitor is commissioned
- Additional capabilities for HR-XIS (W-lines)

New diagnostic developments in O2.2

- HEXOS & HR-XIS back in operation
- UV-vis complement to HEXOS
- Improved CICERS & NBI availability (blips)
- Improved gas seeding capabilities
- Imp. density fluctuation measurements (scoping study)

Expect more reliable operation

Diagnostic availability NBI-heating & blips for CXRS

Encourage to include impurity tracers !

Most often not perturbative *With/without NBI:*

• LBO & TESPEL

With NBI (!!):

- Gas puff modulation (He, Ne)
- Ne/Ar tracer puff

Operational regimes/parameters to be explored

- Low collisionality conditions (P/n limit!)
- Mirror-scan at low collisionality

Missing data & proposals:

- Detailed characterization of non-stationary transport analysis schemes (early campaign termination)
- Complete transport database with sufficient diagnostic data (LBO & TESPEL)
- Towards reactor-relevant conditions: low collisionality
 (P/n limit)
- B-dropper (failed trials & early campaing termination)

Backup

Feedback for impurity transport

Diagnostic issues:

- B. Buttenschön: Limited HEXOS capabilities, Accumulation proxy
- A. Langenberg: Limited XCIS capabilities
- T. Gonda: Additional W-lines identified in HR-XIS
- C. Swee: Fast CXRS measurements of high-n Rydberg

Logbook analysis:

- T. Fornal: CO-Monitor & PHA
- D. Medina: TESPEL injection highlights

Detailed transport analysis:

- C. Swee: Transport analysis with CXRS of LBO-injection
- T. Romba: He-puff modulation (Plume) in NBI-scenarios, Impurity accumulation & transport analysis in NBI-scenarios, Transport suppression for impurities
- D. Zhang: Impurity accumulation in low density/boronized & NBI-conditions

Modeling

- H. Cu Castillo: Gyrokinetic modeling of imp. transport
- J.M. Regana: Modeling of impact of non-trace impurities on turbulent transport

Regimes with reduced turbulent transport

Reduced turbulence impacts impurity transport and is consistently correlated to profile effects:

- Low power & low density scenarios
 - Impurity accumulation for low edge densities
 - Wall conditioning & gas puff

Pure NBI-heating

- Decoupled turbulent impurity transport
- Radial evolution of transport suppression
- Complete suppression of turbulent impurity transport
 → purely (neo-)classical
- ECRH 'flushing' observed

T. Wegner JPP 89 (2023)

Main Objective	Scientific Goal	Measures of Success / Deliverables	
Exploration of reduced turbulence /	 Demonstrate steady-state viability of increased 	High plasma performance in the order of seconds,	
high performance scenarios w.r.t.	performance scenarios after pellet / impurity injections as	including	
stationary plasma conditions, kinetic-,	well as low ECRH/NBI heated plasmas	• T_i above clamping limit (1.5 keV)	
density-, and impurity-profile control	 Qualify actuators for the control of profiles and 	\circ τ_E equal or better to ISS04 scaling	
	impurities	Avoidance of impurity accumulation	
		 Assessment of density profile control 	

Core impurity transport

F. Reimold TF I

T. Romba TF III

Deliverables – TF II

Main Objective	Scientific Goal	Measures of Success / Deliverables	
Integrated scenarios for long-	- Control of divertor/baffle loads and actuation of	 Demonstration of safe divertor scenarios to avoid 	
pulse operation with PFC hea	at heat load distribution	overloaded plasma-facing components	
load control, efficient particle	• Studies on particle exhaust and optimization of	 Determination of trim and/or control coil currents required 	
exhaust, and impurity	plasma fueling schemes	to correct error fields	
screening		 Demonstration of effective pumping, high divertor 	
		compression, and qualification of fueling actuators	
		 Demonstration of long-pulse operation (1 GJ energy 	Radiation
		turnaround)	
 Development of long, 	 Creating conditions for detachment by tailoring 	 Demonstration of scenarios with long, stationary divertor 	G. Partesotti TF III
stationary divertor detachmen	nt edge plasma conditions and impurity seeding	detachment; in particular, for the high-mirror, high-iota	
scenarios with and without	 Compatibility of stationary detachment with high 	- and standard configurations	
impurity seeding	performance scenarios	Characterize the conditions under which detachment is	
	 Development of detachment scenarios with 	possible	
	efficient exhaust	 Achieve rapid transition to detachment 	Core impurity transport
 Exploration of scenarios 	 Migration (erosion, deposition) of tungsten-based 	 Definition of the operation limits associated with plasma- 	F. Reimold TF I
compatible with carbon-free	materials and assessment of operation limits	facing components containing tungsten materials	T. Romba TF III
operation and tungsten PFCs	 Edge scenario development for metallic plasma- 	Characterize the scrape-off layer retention for tungsten	
	facing components	impurities (eroded from baffle and heat shield)	Edge impurity transport
		 Determination of erosion effects due to seeding impurities 	M. Kriete TF III
		Characterize enrichment/accumulation for low-Z and	
		high-Z impurities	v. winters IF III

Main Objective	Scientific Goal	Measures of Success / Deliverables	
 Complete the core transport and stability physics basis in the extended operational space 	 Identify fundamental heat and particle transport mechanisms Continue the assessment of W7-X optimization 	 Documentation of relevant plasma profiles for detailed transport analysis and modelling. Assessment of the effects of heating and fueling actuators (profile shaping, fast ions) and magnetic configuration on turbulent transport. Documentation of core impurity profiles and perturbative experiments for detailed impurity transport analysis and modelling. Confirmation of neoclassical optimization at increased ion temperatures. Confirmation of reduced equilibrium currents at higher betas and different magnetic configurations. Documentation of MHD stability and limits and fast-particle driven 	Core impurity transport F. Reimold TF I T. Romba TF III
 Complete the edge and SOL physics basis in the magnetic configuration space of W7-X 	 Characterization of parallel and perpendicular SOL transport regimes and validation of transport models Characterization of three-dimensional edge + SOL profiles and asymmetries 	 MHD modes within the magnetic configuration space. Providing the experimental data base for understanding transport mechanisms in the island divertor SOL and across the LCFS, including flows, drifts, turbulence Validation of edge transport codes Studies of SOL width and target heat flux scalings Characterization of asymmetries of plasma conditions and radiation, mapping of diagnostic results in 3D island divertor 	Edge impurity transport M. Kriete TF III V. Winters TF III