

ASDE

Uparade

Bayes dynam D.J. Stie ASDEX

Bayesian O-mode profile inversion with dynamic initialisation

D.J. Stieglitz¹, R. Fischer¹, J. Santos², ASDEX Upgrade Team¹

¹IPP Garching ²IPFN-IST Lisbon

(C) EUROfusion

0 0

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 – EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

0 0 0 0 0

Diagnostics basics: O-Mode density reflectometry

At AUG

- Microwave chirp ~ 17-75 GHz
- Reflected at cut-off density
- Overlaid with reference signal
- Beating, due to changing phase delay
- Low-Pass Filter
- Sampling at 40 MHz
- Extract beat frequency
- Group delay ~ beat freq.

 $\tau_g = -\frac{1}{\kappa}$ LFS Sector 5 @ z=0.14m, HFS Sector 4 @z=0.07m

Why initialisation

Initialisation issue

- First frequency ~ 17Ghz
- First probed density 3.6e18 / m³

Why initialisation

Initialisation issue

- First frequency ~ 17Ghz
- First probed density 3.6e18 / m³

Usual solution:

Make a guess, e.g.
 Linear group delay interpolation

 → density along LOS i

Why initialisation

Initialisation issue

- First frequency ~ 17Ghz
- First probed density 3.6e18 / m³

Usual solution:

Make a guess, e.g.
 Linear group delay interpolation

 → density along LOS i

At AUG: Integrated Data Analysis

- Model for $ne(\rho_{pol})$ an $Te(\rho_{pol}) \rightarrow$ Spline
- Fit data from many diagnostics
 - TS \rightarrow ne, Te
 - Interferometry \rightarrow ne
 - Lithium Beam \rightarrow ne(Te, Zeff)
 - ECE \rightarrow Te(ne, B)
 - BES \rightarrow ne(Zeff)
- Reflectometry forward Model τ(ne) [1]
 Key: ne linear between support points

[1] D Stieglitz, J Santos, R Fischer, RSI 2023 "Implementation and validation of swept density reflectometry for integrated data analysis at ASDEX Upgrade"

- 1

• • H-5

Motivation for stand-alone analysis vs IDA

ASDEX Upgrade

Stand alone analysis useful for

- Checking measurements quickly
- Basis for comparison to other diagnostics
- Construct databasis
- Position control of plasma
 - \rightarrow Presented results relevant

Motivation for stand-alone analysis vs IDA

Stand alone analysis useful for

- Checking measurements quickly
- Basis for comparison to other diagnostics
- Construct databasis
- Position control of plasma
 - \rightarrow Presented results relevant

Better way for physics exploitation

- Integrated Data Analysis (IDA)
 - \rightarrow combine with other diagnostics, e.g. Lithium Beam

Motivation for stand-alone analysis vs IDA

Stand alone analysis useful for

- Checking measurements quickly
- Basis for comparison to other diagnostics
- Construct databasis
- Position control of plasma
 - \rightarrow Presented results relevant

Better way for physics exploitation

- Integrated Data Analysis (IDA)
 - → combine with other diagnostics,
 e.g. Lithium Beam

Overview: the individual parts

ASDEX Upgrade

- How to initialise
 - Thinking "forward": density to measurement
 - Linear group delay vs exponential density
 - Fitting first few data points & priors
- Examples and comparison of initialisation
- Discussion of benefits & drawbacks

Initialisation: defining parameters

ASDEX Upgrade

- 1) Group Delays
 - τ_1 & f1 first measured values
 - τ_0 sets initial Radius R₀

Initialisation: defining parameters

- 1) Group Delays
 - τ_1 & f1 first measured values
 - τ_0 sets initial Radius R₀

2) Density profile

- n1 first observed cut-off

- R1(τ init)

Initialisation Guess

Step 1: Define parameter space and compute expected data

Step 1: Define parameter space and compute expected data

D.J. STIEGLITZ | 13.06.2022 | IRW16

Mathematically Underdetermined

Any λ_n possible

Wide range of R1

D.J. STIEGLITZ | 13.06.2022 | IRW16

$\Delta f = 0.5 GHz$ $\Delta n = 2e17/m^3$

Mathematically Underdetermined

Any λ_n possible

Wide range of R1

D.J. STIEGLITZ | 13.06.2022 | IRW16

Very uncertain

Upper limit to λ_n

Lower limit to R1

Initialisation in practice

Example from AUG

- 15 frequencies
- Cauchy likelihood (outlier resistant)
- Uncertainty increases with frequency
 - \rightarrow n ~ exp(x) is assumption

Comment on priors

- λ_n affects density strongly
- Log-normal for $\lambda_n \rightarrow \log(\lambda_n)$ normally distributed e.g. peak at 10mm, same probability at 5 & 20mm
- For reliable estimates with little bias \rightarrow strict limits
- Ideal source for prior \rightarrow Actual data

At AUG $\lambda_n \sim (5 \text{ to } 20)\text{mm}$ H-Mode $\sim (5:10) \text{ mm}$ L-Mode $\sim (10:20) \text{ mm}$

H J Sun PPCF 2020, DOI 10.1088/1361-6587/ab5259

Synthetic examples: 1) exponential basis

Both exponential: trivial

Synthetic examples: 1) exponential basis

Both exponential: trivial

Parabolic model is biased

Synthetic examples: 2) exponential vs parabola

Exponential Basis → Parabola model biased

Synthetic examples: 2) exponential vs parabola

Exponential Basis → Parabola model biased

Parabolic Basis → Exp model biased

Synthetic examples: 2) exponential with shoulder

Exponential Basis ...

... with Gaussian "shoulder"

Synthetic examples: 2) exponential with shoulder

Exponential Basis ...

... with Gaussian "shoulder"

Wrong guess → wrong result

Synthetic examples: 3) Fit quality

Fit quality seen in discrepancy model vs data \rightarrow likelihood

Alternative: calculate Evidence to compare models

Good fit

Synthetic examples: 3) Fit quality

Fit quality seen in discrepancy model vs data \rightarrow likelihood

Alternative: calculate Evidence to compare models

Good fit

Synthetic examples: 3) Fit quality

Fit quality seen in discrepancy model vs data \rightarrow likelihood

Alternative: calculate Evidence to compare models

Good fit

Bad Fit

D.J. STIEGLITZ | 13.06.2022 | IRW16

Comparison to IDA with Lithium Beam & Reflectometry

Start just inside Limit: 2.20m

Prior λ_n = 10mm +- 1.0

In L-Mode 10-20mm \rightarrow adjust prior to 15mm

Prior $\lambda_n = 15$ mm +- 0.3

In L-Mode 10-20mm \rightarrow adjust prior to 15mm

Prior λ_n = 15mm +- 0.3

In L-Mode 10-20mm \rightarrow adjust prior to 15mm

More initialisation frequencies generally useful, prior can be relaxed

Initialisation One Parameter insufficient

•

More data can be used ٠

Summary

Initialisation

- One Parameter insufficient
- More data can be used

Exponential Model

- More flexible
- Closer to SOL plasma
- Prior very important

Summary

Initialisation

- One Parameter insufficient
- More data can be used

Exponential Model

- More flexible
- Closer to SOL plasma
- Prior very important

Fit approach tunable

- Number of data
- Outlier resistant likelihood
- Physics exploitation / Control

Backup Slides

Initialisation: Variability implications

Key-points:

- "Reasonable" profiles with flexibility needs 2 or more parameters
- Problem underdetermined with one data point
- Trend in group delays representative of local density gradient
- Initialisation choice affects density gradients at transition (smoothness desirable) and shifts the remaining profile (dominates uncertainty)

Initialisation: Variability implications

Key-points:

- "Reasonable" profiles with flexibility needs 2 or more parameters
- Problem underdetermined with one data point
- Trend in group delays representative of local density gradient
- Initialisation choice affects density gradients at transition (smoothness desirable) and shifts the remaining profile (dominates uncertainty)
- Effect on profile not linear \rightarrow sampling for uncertainty quantification

Group Delay

Density Profile

Comparison to IDA with Lithium Beam & Reflectometry

Prior λ_n = 10mm +- 0.5

35 initialisation frequencies

UQ for direct inversion: get n(R)

- What we would like to know:
 - R(n) with uncertainty
 - n(R) with uncertainty
 - dn(R)/dR (with uncertainty)

Get initialisation pdf and create samples for initialisation and data

Get initialisation pdf and create samples for initialisation and data

Apply (PWLD) inversion to realisations \rightarrow distribution of R(n)

For an individual density, this means a distribution of locations \rightarrow pdf with mean, median, std, etc

If used for all densities \rightarrow UQ for R(n)

Actually samples are 2D distribution in location and density \rightarrow look at one location for pdf n(R)

Evaluate densities on location grid \rightarrow n(R) with UQ

Median n(R) is function with unique values at desired grid, unlike R(n)

Density gradient can be calculated

Note: n(R) and R(n) essentially the same

