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Goals for the Diagnostic

* Edge pedestal region controls the global plasma confinement as large gradients
lead to various instabilities where particles and energy are lost to the SOL region.

* Measurements of the pedestal radially and in time are important to detect
H-mode and study plasma transport.

* Design and develop a FMCW reflectometer and its associated subsystems.
* Measure plasma density profiles for Aditya-U tokamak

* Indigenous development of Reflectometry on Aditya-U opens up a path for
future tokamaks including for fluctuation measurements.




* Upgradation involved changing the square shaped vacuum
vessel to circular shaped one.
* This allowed installation of additional coils to enable

formation of shaped plasmas.

* Typically densities upto n, = 3 X 10 m~3with a duration . SN

Plasma Parameter Operating Value
. . 1 Major Radius (R) 0.75 meter
of 350 ms are being achieved.
8 2 Average Density < n, > 1.5 1019 m—3
* FMCW Reflectometry to measure plasma density profiles 3 Minor Radius (a) 0.25 meter
_ 4 Peak Density (n,() 3.5x 10" m—3
was established. 5 Toroidal Field (B7) 0.75— 1.5 Tesla
. . : 6  Average Temperature < T, > 300 —400 eV
Two channels are operational in K-Band (26-40 GHz) and Ka- . Plasma Current (/p) 75 25 KA
Band (18-28 GHz), looking at the horizontal mid-plane. 8 Plasma Pulse Duration upto 300 ms




Operating Frequencies
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Conditions for Reflection in Tokamak Plasma

. . [ 2
Plasma is assumed to be, O-Mode of Pr:pagatlon O-Mode = |- %]
1 i
* Cold (vepermar = 0) [ 72 2 f2
X-Mode ni = (1;’;) (fz_ e 2)]
* Small amplitude waves k i fpe = fee

* Unbounded and Homogeneous Reflection occurs whenn — 0

* Magnetic field B, = B(r) only. f = fre ne = 2 47T7761§Eo
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Geometrical Optics Approximation and
its Validity

A phase shift is introduced in the reflected EM wave due to variation in the refractive index of
the plasma along the path of the wave and its subsequent reflection.

In terms of the density gradient scale length L,,,

-1
A Ly = 1 (dne)

_43’1‘f 10 T
0() == [ ntsydr—3 L, ne \ dr

Valid only when the dielectric constant € (r)
varies slowly over the wavelength A of the probing wave

de, (r)
dr

A(r)

ry KL &.(1)




Measurement of the phase shift introduced in the reflected wave from the plasma is the primary goal of the diagnostic.
Density is then calculated from the known probing frequency f.
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Reflectometry System Development for
Aditya-U
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Simulating reflectometer output:

r a1® i
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We expect a f, < 20 MHz for dt >= 5 us for both systems.

* DAQ with a sampling rate of 200 MSps, 12 bit vertical resolution and 4 GS memory depth
* 10 points / fringe for 5us sweep

* Triggers 4 sweeps before V,___ and 45 during plasma operation. Trigger resolution is < 5 ns.

Loop

* Complete system can be remotely controlled via Ethernet




Dispersion due to non-ideal Frequency source

To measure non-linear T, E should be linear
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Correcting Frequency Response of VCO

Output Characteristics of VCO (Sivers_V04280P/01)
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Ka-Band Reflectometer System Response:
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Dispersion due to Waveguide
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Linearized System Characteristics
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Phase Offset Correction

Directional .
Coupler Circulator

Plasma

Low Pass Mixer

Recall, @ _ fb _ Ftarget df 4 (rsys — rref) df
dt c dt C dt

-

constant offset

Equation of St. line: y = mx + ¢

_ 1ﬁ C_(rsys_rref)df

e dt C dt

X = T'target y=fp m




Laboratory Results.
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Verification of measured delay

11.5| —@— Shot# t75 to t115

Group Delay: Shot# t92 to t103 —e— Corrected
T T T T 10{ —®— 1ImDL
_:—n— Ideal . et 2m DL
| —d— Measured . 3 DL
| —-- Internal Delay

==
LOoOrRN
1 1

OCrRrNWRARUO®

7.0

Group Delay [ns]
o

Measured Delay (tyns)

Measured Internal Delay (ns)

-11 -10
2
0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170

Distance (d cm) 0 25 50 75 100 125 150 175 1 2 3
Distance [cm] Delayline Length (m)

3.5




ssing output signal
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RAW DATA t463 1 Baseline Wander Removed: t601_1
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Multiplier

Software Automated Gain Control (AGC):

1. Peak detection after filtering data.

2. Cubic spline interpolation of peaks achieving a smooth

envelope curve.

3. Calculate multiplication factor or variable gain curve of

envelope curve.

4. Multiply the variable gain curve with filtered data.
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Resolution of measured distance
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Extracting Phase from Power Spectral Density

1. Frequency of the signal is estimated using peak detection for the power spectral density in spectrogram.

d
2. Phase measured is then calculated using 27t f), = d—(f orviaQ = 2n(fp4+; — fp)(tiz1 — ti)
3. To verify the algorithm developed, phase from specgram and the simulated phase were compared with

accuracy of > 10713 was obtained.
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solating ¢, from plasma
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Mitigation of Viewport Reflections

Two solutions are possible: Lab results on tilting viewport at angles 0, 10, 20, 30, 40, 50 deg.
1. Placing antennae inside Vacuum Vessel
. . Tilt = 20°
2. Placing viewport at an angle oo
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First Profile Measurements: Aditya-U
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Aditya-U Shot # 35756
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Summary of Experimental Work:

1) A density profile FMCW reflectometer operating in O-mode was designed for Aditya-U tokamak

2) Two channels in 18-28 GHz and 26-40 GHz frequency ranges have been designed, installed and
operated on Aditya-U tokamak.

3) System linearisation, offset correction and reflection mitigation from the viewport for the Ka-
Band system were presented.

4) A signal processing code to remove noise and analyze the baseband signal was developed from
scratch. It includes multiple stages of filtering with change in phase, automated gain correction
algorithm development was discussed. Phase due to plasma is isolated from the measured
phase.

5) Density profiles measured show expected qualitative behavior with changes in plasma current

and line averaged density measured by microwave interferometer diagnostic.




Edge Turbulence Simulations

1. To understand diffusion and energy loss across By (r) due to cross-field drift dynamics of particles,

simulations are required to understand the experimental results obtained.

2. Transport co-efficients estimated by neo-classical theory are an order magnitude lower than those
observed experimentally as no strong turbulence is included in the theory.

3. Mazzucato observed broadband turbulence in ATC tokamak confirming micro instabilities were the cause
of the anomalous transport.

4. Reflectometry Technique can also measure density fluctuations dn,/n, as a function of radial position 7.

5. Asimple pseudo 2D model which takes in to account the strong turbulence observed is explored which
can qualitatively estimate 6n,(r)/n, for the measured density profiles.

6. Charney Hasegawa Mima (CHM) model takes the density profile n, (7, t) as an input and provides

turbulence spectra.




Assumptions for CHM equation:

+ B= B¢ Z only, and n, = n,(x), X is the radial direction and ¥ is the poloidal.

* System is electrostatic, B + 1_3)(1,“) = E = —\7(]5

* Density response to B is adiabatic. The response of electrons to the potential determines
the phase shift between the density and potential profiles. The special case where the
phase shift is zero gives 6ne/ne = e, /Te and is called the adiabatic response

* Frequencies of interest w < w,, Scales involved are so large that ion gyrations are
averages over one cycle.

* (Cold plasma approximation is used. For Aditya tokamak ions have a temperature much

lower than the electrons even in the plasma core with the ratio T,/T, ~ 0.35.




Normalized CHM equation is

0 R IR

Py (Vo x2)-V |[inng + (V2 — k2¢)] = 0
Taking Q = V¢ — k?¢ and adding a viscosity term —vV72()

a_Q
ot

= (Vo x2)-VYQ—=VvVZQ+ ((Vo x 2)- V) Inng(x)

Here (V¢ X 2) is the generalized drift velocity for a fluid parcel across B,z

Equation describes evolution of potential ¢ and therefore density in space and time.
It is valid for incompressible (7 - U = 0) flow in the inviscid (viscosity v — 0) limit.

Reduces to Navier-Stokes equation when k? — 0.

T
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Application to Aditya-U Shot # 35756 @ 170.92 ms
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For collisionless plasma, relation between n, and
Plasma Potential ¢ (k),

ep e
n.(r) = noe{Te} ~ ng+ —¢
T,

Drift velocity is given by
L —VpxZ
Vg = B,
In general,
on, e¢
ng B Te
If assume phase difference A between n, and ¢ is zero,
then,
10744 Sne  ed¢
10 e T,
on
-15]]
N 109 101 107 n 200
| N Thus in ab instabilities
100 101! Qualitatively density fluctuations dn,/n, follow plasma

Wavenumber k potential ¢, but for the phase.
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Summary:

Understanding characteristics of the edge plasma is important both for predicting particle
and heat fluxes onto the surfaces and for influencing the behavior of the core plasma.
Transport of particles and energy and therefore the electrostatic potential ¢ in the edge
region requires a quasi 2D description.

We solve the lowest order description of the turbulent transport which includes the
contribution of the inhomogeneity of the density profile described by the CHM equation.
CHM equation was solved with measured Aditya-U density profile as an input.

Time evolution of the electrostatic potential is obtained for a small region in the edge of the
Aditya-U plasma for assumed density profile.

An inverse cascade of the eddies is observed along with a drift along the 8 — like direction of
the Aditya-U.

Inertial range of the inverse cascade follows the |2 (k)| « k~3while it decays as k~1%.




Future Work:

1. Extend the frequency range by adding higher frequency channels for a more
complete coverage of plasma operation range

2. This will also enable use of X-mode of operation can measure past the point of peak
density due to its B, dependence.

3. Perform dynamic linearisation of the frequency source for improving spatial

resolution.
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