

+Sigil,

Comparative confinement studies in large stellarators

Hjördis Bouvain

Defense of the Master thesis

University of Greifswald

02.06.2023

What can be learned from existing devices for future devices?

T. Klinger et al 2017 Plasma Phys. Control. Fusion **59** 014018

Extrapolating from today's fusion device to reactor size:

"HELIAS 5-B magnet system structure and maintenance concept", F. Schauer et al, Fus. Eng. Des. 88 (2013)

Wind Tunnel Test on Model Cessna - Laboratory Report, T.J. Sheng, 2018

Scaling from model to fullsized plane

UNIVERSITÄT GREIFSWALD

https://commons.wikimedia.org/wiki/File:Cessna_172_%28D-EGUP%29_03.jpg

Reynolds number:
$$R_e = rac{
ho v d}{\mu}$$

medium density:	ρ
velocity:	V
characteristic length:	d
dynamic viscosity:	μ

Principle of similarity:

Two geometric similar bodies with equal R_e possess equal flow physics.

Model size ten
times smaller
$$R_e = \frac{\rho v d}{\mu}$$

		full-sized plane	velocity scaling	medium: water
airfoil length	<i>d</i> (m)	1.6	0.16	0.16
velocity	$V\left(\frac{m}{s}\right)$	60	600	28
medium density	$\rho\left(\frac{\text{kg}}{\text{m}^3}\right)$	0.82	0.82	997.8
dynamic viscosity	$\mu (10^{-5} \text{Pa s})$	1.66	1.66	0.95
Reynolds number	r R _e	4 700 000	4 700 000	4 700 000

Wind Tunnel Tests on a Model Cessna- Laboratory Report, T.J. Sheng. London: Department of Aeronautics, Imperial College London; 2018

Model size ten
times smaller
$$R_e = \frac{\rho v d}{\mu}$$

		full-sized plane	velocity scaling	medium: water
airfoil length	<i>d</i> (m)	1.6	0.16	0.16
velocity	$V\left(\frac{m}{s}\right)$	60	600 40	28
medium density	$\rho\left(\frac{\mathrm{kg}}{\mathrm{m}^3}\right)$	0.82	0.82	997.8
dynamic viscosity	$\mu (10^{-5} \text{Pa s})$	1.66	1.66	0.95
Reynolds number	R _e	4 700 000	<u>4 700 000</u> 316 144	4 700 000

Wind Tunnel Tests on a Model Cessna- Laboratory Report, T.J. Sheng. London: Department of Aeronautics, Imperial College London; 2018

UNIVERSITÄT GREIFSWALD

		full-sized plane	velocity scaling	medium: water
airfoil length	<i>d</i> (m)	1.6	0.16	0.16
velocity	$v\left(\frac{m}{s}\right)$	60	600 40	28
medium density	$\rho\left(\frac{\mathrm{kg}}{\mathrm{m}^3}\right)$	0.82	0.82	997.8
dynamic viscosity	$\mu (10^{-5} \text{Pa s})$	1.66	1.66	0.95
Reynolds number	R_e	4 700 000	<u>4 700 000 316 144</u>	4 700 000

Wind Tunnel Tests on a Model Cessna- Laboratory Report, T.J. Sheng. London: Department of Aeronautics, Imperial College London; 2018

Hjördis Bouvain: Comparative confinement studies in large stellarators

What can be learned from existing devices for future devices?

Extrapolating from today's fusion device to reactor size:

Scaling of the confinement with dimensionless parameters to extrapolate to larger machines

Extrapolating stellarators to ignition

Dimensionless parameters in fusion:

В

magnetic field:

Extrapolating stellarators to ignition

Dimensionless parameters in fusion:

Extrapolating stellarators to ignition

Dimensionless parameters in fusion:

Confinement

Global energy confinement time:

$$\tau_E = \frac{W_{dia}}{P_{heat} - \frac{dW_{dia}}{dt}}$$

Confinement

Global energy confinement time:

$$\tau_E = \frac{W_{dia}}{P_{heat} - \frac{dW_{dia}}{dt}}$$

Empirical scaling law ISS04: [1]

$$\tau^{\text{ISS04}} = 0.134 \text{ a}^{2.28} \text{R}^{0.64} \text{B}^{0.84} t_{\frac{2}{3}}^{0.41} P_{heat}^{-0.61} n_e^{0.54}$$

Recreated from A. Dinklage et al 2007 Nucl. Fusion 47 1265

[1] H. Yamada *et al* 2005 *Nucl. Fusion* **45** 1684

Confinement

Global energy confinement time:

$$\tau_E = \frac{W_{dia}}{P_{heat} - \frac{dW_{dia}}{dt}}$$

Empirical scaling law ISS04: [1]

$$\tau^{\text{ISS04}} = 0.134 \text{ a}^{2.28} \text{R}^{0.64} \text{B}^{0.84} t_{\frac{2}{3}}^{0.41} P_{heat}^{-0.61} n_e^{0.54}$$

Renormalisation factor:

$$f_{ren} = \frac{\tau_E}{\tau_{scaling}}$$

Recreated from A. Dinklage et al 2007 Nucl. Fusion 47 1265

[1] H. Yamada *et al* 2005 *Nucl. Fusion* **45** 1684

Machines

R. C. Wolf, A. Alonso, S. Äkäslompolo, et al., "Performance of Wendelstein 7-X stellarator plasmas during the first divertor operation phase"

		VV / - X	LHD
major plasma radius	<i>R</i> (m)	5.5	3.9
minor plasma radius	<i>a</i> (m)	0.55	0.65
plasma volume	$V(m^3)$	30	30
magnetic field	<i>B</i> (T)	2.5	< 3

LHD

"Magnetic Fusion Energy From Experiments to Power Plants", George H. Neilson

Dataset used

Calculation of τ_E and τ^{ISS04}

8

8

8

$$\tau_E = \frac{W_{dia}(t)}{P_{heat}(t) - \frac{dW_{dia}}{dt}}$$

$$\tau^{\text{ISS04}} = 0.134 \, \mathrm{a}^{2.28} \mathrm{R}^{0.64} \mathrm{B}^{0.84} t_{\frac{2}{3}}^{0.41} P_{heat}(t)^{-0.61} n_e(t)^{0.54}$$

"Stationary" discharges:

Employing average values of P_{heat} , n_e and W_{dia} during the stationary phase (red shaded region)

"Transient" discharges:

Employing values of P_{heat} , n_e and W_{dia} at instance when W_{dia} is maximal (red dashed line)

Calculation of the renormalisation factor for temporal analysis

LHD and W7-X datasets show similar confinement quality

Dependency of the confinement on magnetic configuration in LHD dataset: optimal at $R_{ax} = 3.60 \text{ m} [1]$

[1] S. Murakami et al 2002, Nucl. Fusion 42 L19

Dependency of the confinement on magnetic configuration in LHD dataset: optimal at $R_{ax} = 3.60$ m [1] due to improved neoclassical confinement

[1] S. Murakami *et al* 2002, *Nucl. Fusion* **42** L19

No dependency of the confinement on the heating method in LHD dataset

No dependency on magnetic configuration or heating method in W7-X dataset

Density dependency of confinement in typical ECR heated discharges

Linear decrease of f_{ren} for increasing density in purely ECR heated stationary discharges

Machine dependency on confinement improvement by pellet-injection

Pellet injections lead to enhancement of plasma energy

Confinement improvement different for LHD and W7-X

Scaling with dimensionless parameters of the LHD dataset

Possible scaling with one dimensionless parameter:

Configuration	β	ρ*	ν*
R _{ax} = (3.5 – 3.56) m			
R _{ax} = 3.6 m			
R _{ax} = (3.7 – 3.75) m		×	
R _{ax} = 3.9 m		×	

Confinement scaling with ρ^* of the LHD dataset

No reliable scaling of the confinement time with ρ^* in the LHD dataset due to the large error and small dataset

UNIVERSITÄT GREIFSWALD

Scaling with dimensionless parameters of the W7-X dataset

Possible scaling with one dimensionless parameter:

Configuration	β	ρ*	ν*
standard	×		
high-mirror	×		
high-iota			×
low-iota	×		

No ρ^* scaling possible: further ρ^* scan experiments in W7-X needed

Proposal: Variation of magnetic field for ρ^* - scans in W7-X

High- and low magnetic field for operation with O2 at high fields and X3 at low fields for similar deposition profiles:

$$B_H = 2.5 \text{ T}$$
 $B_L = \frac{2}{3}B_H = 1.67 \text{ T}$

Keeping β and ν^* constant over both operation scenarios by matching high and low field density *n* and temperature *T* using the magnetic field:

Comparison of low and high field discharges provides insight in ρ^* - scaling

- Investigation of confinement quality for selected datasets from LHD and W7-X with respect to magnetic configuration, heating method and discharge scenario
- Unified approach for the assessment of LHD and W7-X confinement data
- Use of integrating factors for a temporal analysis of transient confinement

	LHD dataset	W7-X dataset
Magnetic configuration	Improved τ_E at $R_{ax} = 3.6m$ (reduced neoclassic transport)	No dependency found
Heating methods	No apparent dependency found	No dependency found
Pellet injection	Enhanced W_{dia} with $f_{ren} < 1$	Enhanced W_{dia} with $f_{ren} > 1$

Outlook: ρ^* - scan experiment in W7-X (achievable by magnetic field variation)