

à

0

0 0

0

0 0

0

0 0

The island divertor: A promising candidate for a future stellarator reactor divertor?

Wendelstein 7-X

Requirements for a reactor divertor:

- Stable detachment^[1,2] (with impurity seeding^[3])
- Sufficient impurity retention in SOL
- Helium compression/exhaust

O. Schmitz et al, *Nucl. Fusion* **61** (2021) 016026
 M. Jakubowski et al, *Nucl. Fusion* **61** (2021) 106003
 F. Effenberg et al, *Nucl. Fusion* **59** (2019) 106020

The island divertor: A promising candidate for a future stellarator reactor divertor?

Requirements for a reactor divertor:

- Stable detachment^[1,2] (with impurity seeding^[3]) ٠
- Sufficient impurity retention in SOL ٠
- Helium compression/exhaust •

1000

Many of these requirements depend on the SOL impurity transport!

[1] O. Schmitz et al, Nucl. Fusion 61 (2021) 016026 [2] M. Jakubowski et al, Nucl. Fusion 61 (2021) 106003 [3] F. Effenberg et al, Nucl. Fusion 59 (2019) 106020

Impurity transport in a tokamak vs island divertor

- Caused by impurity ionization beyond the impurity poloidal flow stagnation point^[4,5]
- In the absence of drifts, large $\nabla_{\parallel} T_i$ leads to upstream impurity flow^[4]

[4] I. Y. Senichenkov et al, Plasma Phys. Control. Fusion 61 (2019) 045013

- [5] P. C. Stangeby et al, Nucl. Fusion 60 (2020) 106005
- [6] Y. Feng et al, Nucl. Fusion **49** (2009) 095002
- [7] V. R. Winters et al, Nucl. Fusion (submitted)

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | V. R. WINTERS | 25.09.2023

Wendelstei

Impurity transport in a tokamak vs island divertor

In a tokamak, transport parallel to \overline{B} is dominant impurity leakage pathway^[4,5]

- Caused by impurity ionization beyond the impurity poloidal flow stagnation point^[4,5]
- In the absence of drifts, large $\nabla_{\parallel}T_i$ leads to upstream impurity flow
- In a stellarator island divertor, \perp transport plays a larger role, even reducing the effects of parallel transport^[6]
 - Binormal transport within flux tubes flattens $\nabla_{\parallel} T_i^{[6]}$

[8] König et al, Plasma Phys. Control. Fusion 44 (2002)

[4] I. Y. Senichenkov et al, *Plasma Phys. Control. Fusion* **61** (2019) 045013

- [5] P. C. Stangeby et al, Nucl. Fusion 60 (2020) 106005
- [6] Y. Feng et al, Nucl. Fusion 49 (2009) 095002
- [7] V. R. Winters et al, Nucl. Fusion (submitted)

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | V. R. WINTERS | 25.09.2023

Impurity transport in a tokamak vs island divertor

Wendelstein 7-X

In a tokamak, transport parallel to \overline{B} is dominant impurity leakage pathway^[4,5]

- Caused by impurity ionization beyond the impurity poloidal flow stagnation point^[4,5]
- In the absense of drifts, large $\nabla_{\parallel}T_i$ leads to upstream impurity flow

In a stellarator island divertor, \perp - transport plays a larger role, even reducing the effects of parallel transport^[6]

- Binormal transport within flux tubes flattens $\nabla_{\parallel} T_i^{[6]}$
- Consequently, impurities flow towards the target over the majority of the island SOL^[6,7]
- The dominant impurity leakage pathway is likely different to tokamaks^[7]
- [4] I. Y. Senichenkov et al, *Plasma Phys. Control. Fusion* **61** (2019) 045013
- [5] P. C. Stangeby et al, *Nucl. Fusion* **60** (2020) 106005
- [6] Y. Feng et al, Nucl. Fusion 49 (2009) 095002
- [7] V. R. Winters et al, Nucl. Fusion (submitted)

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | V. R. WINTERS | 25.09.2023

Using EMC3-Eirene to understand the dominant impurity leakage pathway

- Solves 3D plasma/neutral background in steady-state^[9]
- Impurity transport parallel to \vec{B} given by^[11]:

$$V_{Z\parallel} = V_{i\parallel} + \frac{\tau_s}{m_z} \left[(\beta_i - 1) \frac{\mathrm{d}T_i}{\mathrm{d}s} + \alpha_e \frac{\mathrm{d}T_e}{\mathrm{d}s} + ZeE_{\parallel} - \frac{T_i}{n_z} \frac{\mathrm{d}n_z}{\mathrm{d}s} \right]$$

- Transport perpendicular to \vec{B} anomalous, $D_{Z,\perp} = D_{i\perp}$
- Simulations in standard configuration, with radiation from carbon
- On a fixed plasma background, effects of parallel and perpendicular impurity transport studied for carbon, nitrogen, neon, and helium

[9] Y. Feng et al, *Contrib. Plasma Phys.* 54 (2014) 426-431
[10] H. Frerichs et al, *Nuclear Materials and Energy* 18 (2019) 62-66
[11] P. C. Stangeby, *Plasma Boundary of Magnetic Fusion Devices* (2000)

Ion thermal force confirmed to have little to no effect on the plasma background

• No significant ion thermal force – entire SOL is in a friction dominated regime

Total carbon separatrix density

- With ion thermal force: 1.4e17
- Without ion thermal force: 1.2e17
- Differences on the order of 10%

Total Nitrogen Density Total Helium Density [ع م م $D_z = 0.5 \text{ m}^2 \text{s}^{-1}$ 0.8 [1.0 ع ۲ 10^{17 గ్రా} $D_z = 0.01 \text{ m}^2 \text{s}^{-1}$ 08 $D_z = 0.001 \text{ m}^2 \text{s}^{-1} \left[\frac{\text{E}}{\text{N}}^{1.0} \right]$ 0.8 5.4 5.6 5.2 5.6 5.0 5. 5.0 5.2 5.4 5.8 R [m] R [m]

 D_z scan on fixed plasma background shows perpendicular transport dominates impurity leakage

 $n_{e,s} = 1 \times 10^{19} \text{ m}^{-3} \rightarrow \bar{n}_{li} = 4 \times 10^{19} \text{ m}^{-2}$

[7] V. R. Winters et al, *Nucl. Fusion* (submitted)

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | V. R. WINTERS | 25.09.2023

Wendelstei

 D_z scan on fixed plasma background shows perpendicular

transport dominates impurity leakage

 $n_{e.s} = 1 \times 10^{19} \text{ m}^{-3} \rightarrow \bar{n}_{li} = 4 \times 10^{19} \text{ m}^{-2}$

[7] V. R. Winters et al, Nucl. Fusion (submitted)

Wendelstei

Total Nitrogen Density Total Helium Density [ع] ح ح $D_z = 0.5 \text{ m}^2 \text{s}^{-1}$ 0.8 _ 1.0 ' ق ∩18 بن 10_{17 ش} $D_z = 0.01 \text{ m}^2 \text{s}^{-1}$ 10¹⁶ E Net Nitrogen Velocity Z=3 50 $\omega = 12^{\circ}$ 1.0 Z [m] km/s] 0 10¹⁶ E $V_{z\parallel}$ =50 0.8 $V_{z\parallel} = 0$ 5.0 5.8 5.2 5.6 5.4 5.2 5.0 5.4 5.6 5. 5.0 5.2 5.8 5.4 5.6 R [m] R [m]

[7] V. R. Winters et al, *Nucl. Fusion* (submitted)

 $n_{e.s} = 1 \times 10^{19} \text{ m}^{-3} \rightarrow \bar{n}_{li} = 4 \times 10^{19} \text{ m}^{-2}$

D_z scan on fixed plasma background shows perpendicular transport dominates impurity leakage

Ionization source changes plays a role in retention by bringing impurity ionization closer to the LCFS/island O-Point

- Outward/inward radial movement of source is an accurate indicator for when retention improves/degrades
- Inward movement of source \rightarrow less geometrical distance to LCFS \rightarrow lower retention

[4] V. R. Winters et al, Nucl. Fusion (submitted)

Wendelsteir

Ionization source changes follows well the differences in observed impurity retention

- Outward/inward radial movement of source is an accurate indicator for when retention improves/degrades
- Inward movement of source \rightarrow less geometrical distance to LCFS \rightarrow lower retention

Wendelsteir

Ionization source changes follows well the differences in observed impurity retention

Wendelsteir

How can we test this in experiment?

 Impurity retention picture may change depending on impurity seeding valve

• First experiments performed in OP2.1

So, what knobs can we turn to minimize impurity leakage in a future reactor island divertor?

Tuning the island size

Increasing island size could improve impurity retention^[12]

So, what knobs can we turn to minimize impurity leakage in a future reactor island divertor?

Tuning the island size

Increasing island size could improve impurity retention^[12]

Both configurations to be tested in this current experimental phase!

^[12] Y. Feng et al, Nucl. Fusion 56 (2016) 126011

So, what knobs can we turn to minimize impurity leakage in a future reactor island divertor?

Tuning the island size

Increasing island size could improve impurity retention^[12]

Tuning island rotational transform

- Decreasing L_c (increasing island rotational transform Θ) in the island allows access to a higher recycling regime larger SOL density requires lower impurity content for similar radiation levels
 - Optimum rotational transform to keep benign parallel transport/high divertor density?

