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Goal/Motivation of the study

● To achieve this:

[1] Janky F et al. ,  Fusion Eng. Des. 163 112126 (2021)         [2] E. Fable et al. ,  PPCF 64 044002 (2022)

Prediction of a plasma
discharge evolution

Check bad
discharge evolutions

Which cause delays
and costs

Avoid disruptions

Tokamak Flight
Simulator (Fenix [1],[2])

Suite of codes which predicts the evolution of a plasma discharge by
matching the actuator trajectories of the discharge plan

Interaction between control system, equilibrium and transport

Match physics
goals

Develop control and
physics models
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Simplified Plasma Transport Models

● The Asdex Upgrade (AUG) control system is represented in Simulink, the equilibrium is calculated 

with SPIDER [3], but the plasma physics models are not fully developed.

[3] Ivanov A A et al. 32nd Conf. on Plasma Physics vol 29C (ECA)  

Development of a set of
simplified transport

models Reliable to correctly predict the
plasma evolution

erf(l
i
,β,V

loop
,n

e,avg
)≈5-10%

erf(k,δ)≈1-5%

fast to be used inter-discharges
for present machines

(typical AUG: 10s discharge run
in 5 minutes of computational time)

Analytical formulae

Physics-based

Inclusion of core,
edge and SOL modelsintegrated model



M A X- PL A N C K - I N S T I T U T F Ü R  P L AS M A P H Y SI K  |  M AR C O  M U R A C A | 1 8 / 11 / 2 0 2 2 H EP P F I N AL TAL K 4

Structure of the plasma model

Development of simplified physics-based models for:

● CORE transport, based on analytical coefficients obtained by fitting a TGLF [4] 
database;

● EDGE pedestal, with L-H transition and simple ELMs average model;

● SOL multispecies density, based on 0-D particle balance between 6 different 
zones;

● Power exhaust (Te,sep), based on a 2-point model.

[4] Staebler G M et al., Nucl. Fusion 57 066046 (2017)
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Core heat transport model

● 15 stationary phases of AUG discharges simulated with TGLF (L-mode, H-mode, I-mode and negative 
triangularity).

● For every discharge a scan in pedestal height (+-10%) for ne, Te and Ti.

● 6 different ρ toroidal coordinates between 0 and 0.9 (around 12600 points). For 1 L-mode discharge points 
up to ρt=1 are included.

● Fitting over gyroBohm normalized TGLF database to match χχe and χi.

● Thresholds are taken from literature [5], [6].

                                                                                                          ELECTRONS

             IONS                                                                                        

[5] A. G. Peeters et al., Phys. Plasmas 12, 022505 (2005)

[6] F. Jenko et al., Physics of Plasmas 8, 4096 (2001)

χ̂i , ITG=C⋅H ITG(
R
LTi

−
R

LTi , ITG )
ϵ10

qγq e
−γβe

βe k−γke−γ imp(1−c I)

χ̂e, ETG=C⋅H ETG(
R
LTe

−
R

LTe ,ETG )
ϵ20

qγq, ek−γk , e

χ̂e,TEM=C⋅HTEM (
R
LTe

−
R

LTe ,TEM )
ϵ30

e−γnuνe−γs s e−γδ , eδ

χ̂ e , ITG=max {1 ; f t D3

LTe

LTi
} χ̂i , ITG

χ̂e=(1−f t ) χ̂e ,ETG+ f t χ̂ e,TEM+χ̂e , ITG



M A X- PL A N C K - I N S T I T U T F Ü R  P L AS M A P H Y SI K  |  M AR C O  M U R A C A | 1 8 / 11 / 2 0 2 2 H EP P F I N AL TAL K 6

Core heat transport model

● Thresholds formulae for micro-instabilities
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=max {A 10(1+B10Zeff

T i

T e
)(1+B20 sq ) (1−1.5 f t

2 ) [1+0.3 (k−1 ) ] ; A 20
R
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T e

T i
)(1+G20

s
q ) (1−1.5 f t

2 ) [1+0.3 (k−1 ) ] ;F20
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R
LT e , TEM

=0.357
f t+0.271

f t [4.9−1.31 R
Lne

+2.68 s+ log(1+20 ν)]

[5] A. G. Peeters et al., Phys. Plasmas 12, 022505 (2005)
[6] F. Jenko et al., Physics of Plasmas 8, 4096 (2001)

[6 ]

[5 ]
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Core heat transport model

● TEM+ITG and ETG contributions to χe fitted separately to improve fitting procedure.

● Scattering of fitted coefficients respect

to TGLF due to 

Lack of some parameters

Low χ, proximity to the thresholds

Smearing of coefficients profiles
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Core particle transport

● D=0.96*χe has been assumed to match an experimental case.

● Particle pinch is calculated with a heuristic formula:

v p=−Dn

max {0;0.2 Rtor|
∂rT e

T e
|+0.15 s−

νei

15 }
R tor
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EDGE model

PEDESTAL
● Schmidtmayr scaling [7] for L-H transition.
● ELM averaged model, using a critical normalized pressure gradient (Ballooning model) from top of 

pedestal (ρ
t
=0.9) outwards:

                                                                                                                                    [8]                                    [9]
                                                                                                                                  

Particle diffusivity has been assumed equal to 0.03*χ
e
 in H-mode [9].

L-MODE

● Edge in L-mode has been modeled by extending the core model to separatrix.
● During L-mode particle diffusivity is C*χ

e
, where C was calibrated to 0.1 to match an L-mode phase.

[7] Schimdtmayr M et al., Nuclear Fusion 58 056003 (2018)       [8] J. Puchmayr, Optimization of Pedestal Stability on ASDEX Upgrade, IPP report 2020-11
[9] T. Luda et al., Nucl. Fusion 60 036023 (2020)

χe=C (
βp , top

βp ,MHD
)
4

βp ,MHD=0.686√k (1+δ)
1.68q1.61βp , top

0.33 n̂e
0.06w p

1.29 χi=χe+χi ,nc



M A X- PL A N C K - I N S T I T U T F Ü R  P L AS M A P H Y SI K  |  M AR C O  M U R A C A | 1 8 / 11 / 2 0 2 2 H EP P F I N AL TAL K 1 0

SOL models

1) For the exhaust (T
e,sep

) an analytical formula derived from 2-point model [10] is used:

2) To give density at the separatrix (n
sep

) a multispecies SOL particle balance between 6 confining 
regions has been developed:

● Diffusion is modeled by diffusivities (D
jk

) and enrichment factors (ε
jk

) are used to simulate 

compression factors between confining regions.

● Vacuum pump, gas puffs and plasma from the confined region are treated as local sinks and sources.

[10] R. J. Goldston et al., PPCF 59 055015 (2017)
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SOL particle balance

Temporal evolution of D density in the 6 regions of the SOL for discharge #40446 in Fenix:
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Integrated simulation of discharge #40446 in Fenix

A match of the experimental
time traces and profiles for a
standard H-mode (#40446) in a
Fenix simulation with the fully
integrated model has been
reached during flattop and
ramp-down:

Experiment
Fenix
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Integrated simulation of discharge #40446 in Fenix

ELECTRON DENSITY ELECTRON AND IONS TEMPERATURE
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Boundary condition evolution of discharge #40446

Temporal evolution of ne,sep and Te,sep for discharge #40446 of AUG (std Hmode):
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Integrated modeling parameters of discharge #40446

● Ion power at the separatrix and beta time traces for discharge #40446
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Integrated simulation of discharge #38898 in Fenix

A match of the experimental
time traces and profiles for an
L-mode (#38898) in a
Fenix simulation with the fully
integrated model has been
reached during flattop and
ramp-down:

Experiment
Fenix
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Integrated simulation of discharge #38898 in Fenix

ELECTRON DENSITY ELECTRON AND IONS TEMPERATURE
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Validation of other discharges (H-modes)

Some other discharges with different
densities and heating powers have
been validated
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Validation of other discharges (H-modes)

Some other discharges with different
densities and heating powers have
been validated
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Conclusions and Outlook

Conclusions

● A set of simplified transport models for the tokamak flight simulator Fenix has been derived.

● The CORE model consists of analytical formulae which fit a TGLF database.

● The EDGE pedestal model is based on an L-H transition and an ELMs averaged transport.

● SOL models give the boundary conditions of temperature and density at the separatrix respectively through a 2-point 
model and a particle balance.

● Using these models, the experimental trajectories of 5 AUG standard H-mode and 1 L-mode have been matched in Fenix 
during the flat top and the ramp-down.

Future Work

● Expansion of physics models (detachment, core particle transport, MHD).

● Validation of Fenix over a wide range of experimental scenarios.

● Generalization of physics models for different machines.
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BACKUP SLIDES

● Standard deviations of transport coefficients depending on different fitting parameters
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BACKUP SLIDES

● Diffusion coefficients in the SOL model

● Enrichment factors in the SOL

D∥=0.1
Ma

L par , sep

D⊥=
0.05νsep

(Rw−Romp)
2

D10=0.03D⊥D12=0.5D⊥
D23=D34=D26=1000D∥

D45=D56=0.1 D16=0

ϵ12=ϵ23=ϵ45=ϵ16=ϵ56=1 ϵ34=10

ϵ26=5max {1 ;min {20 ;0.2nd
0.67 }}
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BACKUP SLIDES

● Contribution of different micro-instabilities to transport and time traces of discharge #40446
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BACKUP SLIDES

● Heating powers of discharge #40446
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BACKUP SLIDES

● Actuators (stabilizing coil currents) of discharge #40446
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BACKUP SLIDES

● Position and shape feedback of discharge #40446
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BACKUP SLIDES

● Average density feedback of discharge #40446
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