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ABSTRACT

v Modelling of Plasma-Wall-Interactions (PWI) depends on distributions describing
the angle- and energy distribution of particles scattered at first wall R(p,0,E]|

Ey,90,00,5)

Most PWI codes (like SOLPS, EIRENE) rely on extensive tables based on
reflection simulations (e.g. by SDTrimSP-1D) or analytical formulae — however,
both approaches assume an atomistically flat (smooth) surface

Rough surfaces which are formed under particle impact typically display a very
different particle distribution compared to smooth surfaces [1] — also the
differences are much larger compared to the effects on sputter yields

Roughening almost unavoidable e.g. due to preferential sputtering,
orientation dependent sputtering, precipitates, thermal cycling [2]

The effects of roughening on the reflection distributions have been investigated
using W- and W-Fe-surfaces of different morphology with molecular dynamics
(LAMMPS) and within the binary collision approximation (BCA) by SDTrimSP-
2D

MODELLING APPROACH

Dynamic surface evolution under
SDTrimSP-2D (version 2.06)

Determination of reflection distributions at various fluence steps keeping the
surface unchanged (static mode)

Molecular dynamic simulations are performed with LAMMPS using the Tersoff-type
potential by Juslin [3] for the WH-system

Self-consistent modelling of particle-reflection-
distributions of rough surfaces

lon-irradiation has been modelled using

SDTrimSP 7.00 for BCA-type simulations using a W-bcc-lattice at 700 K
Data compression using hemi-spherical harmonic basis functions Y™, [4] for

R(p,9|E; ,E;,90,,0,,S) followed by a Chebyshev-series for the individual Y™,(E;)
as function of E,

DYNAMIC SURFACE EVOLUTION

v Example of EUROFER and surrogate (2%W in Fe) [5] under ion-irradiation with
right: simulation with SDrimSP-3D

V. Focus on simplified model-system with 2d-periodic structure (Fe with embedded
tungsten pillars) : surface erosion under 200 eV D bombardment for two
different angles (perpendicular impact (86 =0 deg) (left panel) and 6=45 deg

<« (right panel)) -

200 eV D left: SEM-image
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CONCLUSION

v Reflection properties of surfaces are much stronger affected by surface morphologies
(ile. roughness) than sputter yields

vV A robust result is the strong attenuation of the often assumed specular (forward)
reflection of non-perpendicular impinging particles — typically most pronounced for
the reflected particles with the highest energies. In some structures even backward-
reflection may become dominant : consequences on PWI-modelling results need to
be assessed

v Effect is present in amorphous and crystalline samples

v Efficient tabulation of data (particle-reflection distribution function R(p,9,E|E;,(®,),0,,S) )
for PWI-codes appears feasible using a suitable orthogonal basis-function system

v Dynamically evolving 3-d morphologies are feasible - but computationally still very
heavy : put focus on reference surfaces?

MODELLING RESULTS |

vV (p-0)-polar plots of reflected particle distributions (¢@=[0..360] deg, 6=[0..90] deq),
perpendicular impact (case a) and 45 deg (case b)
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v. Comparison of (amorphous) SDTrimSP-simulations with (crystalline) MD-
calculations for two geometries (flat and wedge) : P,
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DATA COMPRESSION USING A NEW BASIS SYSTEM

v 3-dimensional distributions are impractical to handle by tables and coarse

graining possibilities amestimitec
angular distribution and interpo
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v Example: reflection of 200 eV D impinging under 45 degrees onto tungsten : angular
distribution for D atoms reflected with E, = 164 eV: particle histogram (left panel),

series coefficients of Y-expansion (middle panel), derived density (right panel)
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