

Pillars of Creation, JWST, https://stsci-opo.org/STScI-01GK2KMYS6HADS6ND8NRHG53RP.png

0 0 0 0 0 0 0 0 0 0

0

WHAT ARE COSMIC RAYS (CR)

"A dilute, non-thermal, high pressure relativistic gas"

WHAT ARE COSMIC RAYS (CR)

• Power law spectrum (GeV – ZeV)

 $dN(E) \propto E^{\alpha} dE$

• 2nd-Order Fermi-Type Acceleration in shock environments

$$\langle \frac{\Delta E}{E} \rangle = \frac{4}{3} \gamma^2 \beta^2 \simeq \frac{4}{3} \beta^2, \beta = V/c$$

$$\langle \frac{dE}{dt} \rangle = \frac{E}{t_{acc}}, t_{acc} \propto \tau_s \simeq \lambda_{mfp}/c$$

[Chandra NASA/CXC/SAO]

[ESO]

WHAT IS THE INTERSTELLAR MEDIUM (ISM)?

[Cartwheel Galaxy, Hubble]

WHAT IS THE ISM?

• Hot Ionized Medium (HIM)

- ► Vol.: 30 60 %
- $T \gtrsim 10^{5.5}$ K (Shock heated, adiab./X-ray cooling)
- $\rho \sim 10^{-3} \, \mathrm{cm}^{-3}$
- $\chi \sim 1$ (coll. Ionization)

• Warm Ionized Medium (WIM, "HII")

- Vol.: ~ 0.1%
- $T \sim 10^4$ K (Photoelectron-heating, opt. & MIR line-emission cooling)
- $\rho \sim 10^{-1} \, \mathrm{cm}^{-3}$
- $\chi \sim 0.7$ (Photo-Ionized by UV)

• Warm Neutral Medium (WNM, "warm HI")

- Vol.: ~ 40%
- $T \sim 5000$ K (Dust photoel.—heating, FIR line-emission cooling)
- $\rho \sim 0.5 \,\mathrm{cm}^{-3}$
- $\chi \sim 10^{-1}$ (CRs & Starlight)

• Cold Neutral Medium (CNM, "cold HI" & "H₂-gas")

- ► Vol.: ~ 1 %
- $T \sim 10 100$ K (Dust photoel.- & CR-heating, FIR line-emission)
- $\rho \sim 30 10^3 \, \mathrm{cm}^{-3}$
- $\chi \lesssim 10^{-3}$ (CRs)

[JWST]

STRUCTURAL HIERARCHY OF THE ISM

WHAT IS THE ISM?

- Energy Budget:
 - i) $w_{turb} \approx 0.2 \, {\rm ev/cm^{-3}}$
 - ii) $w_{CMB} \approx 0.265 \text{ ev/cm}^{-3}$
 - iii) $w_{Dust} \approx 0.31 \, {\rm ev/cm^{-3}}$
 - iv) $w_{Starlight} \approx 0.5 \text{ ev/cm}^{-3}$ (< 13.6 eV)
 - v) $w_{therm} \approx 0.5 \text{ ev/cm}^{-3}$ ($nT = 3800 \text{ cm}^{-3}$ K)
 - vi) $w_{mag} \approx 0.9 \text{ ev/cm}^{-3}$ ($B_{tot} = 6 \mu \text{G}$)

vii) $w_{CR} \approx 1 \text{ ev/cm}^{-3}$

- Large variety of conditions (4 Major Phases)
- Hierarchy of Scales & Structures

[Hubble]

TURBULENCE IN MOLECULAR CLOUDS

- Structure dictated by turbulence
- Turbulence in partially ionized media?
- Only now numerically feasible

2FMHD EQUATIONS

Compressible 2FMHD EQs:
(1)
$$\frac{\partial \rho_i}{\partial t} + \nabla \cdot (\rho_i \mathbf{v}_i)$$

(2) $\frac{\partial \rho_n}{\partial t} + \nabla \cdot (\rho_n \mathbf{v}_n)$
(3) $\frac{\partial \rho_i \mathbf{v}_i}{\partial t} + \nabla \left[\rho_i \mathbf{v}_i \mathbf{v}_i^T + \left(c_{S,i}^2 \rho_i + \frac{B^2}{8\pi} \right) \mathbf{I} - \frac{\mathbf{B}\mathbf{B}^T}{4\pi} \right] = \gamma_D \rho_i \rho_n \left(\mathbf{v}_i - \mathbf{v}_n \right) + f_n$
(4) $\frac{\partial \rho_n \mathbf{v}_n}{\partial t} + \nabla \left[\rho_i \mathbf{v}_n \mathbf{v}_n^T + c_{S,n}^2 \rho_n \mathbf{I} \right] = \gamma_D \rho_n \rho_i \left(\mathbf{v}_i - \mathbf{v}_n \right) + f_n$
(5) $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v}_i \times \mathbf{B})$
(6) $\nabla \cdot \mathbf{B} = 0$
With the current: $\mathbf{I} = -e\rho_i \mathbf{v}_i$

Collisional coupling:

- Drag coefficient: $\gamma_D = \frac{1}{2m_n} \sqrt{\frac{16k_BT}{\pi m_i}} \sigma_{in}$
- Ion-neutral collisions: $\nu_{in} = \gamma_D \rho_n$
- Neutral-ion collisions: $\nu_{ni} = \gamma_D \rho_i$

•
$$\chi = \rho_n / \rho_i \implies \nu_{in} = \chi \nu_{ni}$$

 $\mathbf{v}_n - \mathbf{v}_i + f_i$

2FMHD - COUPLING LIMITS

Strongly Coupled

Weakly Coupled

2FMHD - SCALE LIMITS

Large Scales ($k \ll c_{ph}\nu_{coll}^{-1} \& \omega \ll \nu_{coll}$ **)**

LINEAR WAVES

Linearized compressible 2FMHD EQs:

(1)
$$\rho_i \frac{\partial \mathbf{v}_i}{\partial t} = -\nabla c_{S,i}^2 \rho_i + \frac{1}{\mu} (\nabla \times \mathbf{b}) \times \mathbf{B} - \gamma_D \rho_i \rho_n (\mathbf{v}_i - \mathbf{v}_n)$$

(2) $\rho_n \frac{\partial \mathbf{v}_n}{\partial t} = -\nabla c_{S,n}^2 \rho_n - \gamma_D \rho_i \rho_n (\mathbf{v}_n - \mathbf{v}_i)$
(3) $\frac{\partial \mathbf{b}}{\partial t} = \nabla \times (\mathbf{v}_i \times \mathbf{B})$
(4) $\frac{\partial p_i}{\partial t} = -c_{S,i}^2 \rho_i \nabla \cdot \mathbf{v}_i$
(5) $\frac{\partial p_n}{\partial t} = -c_{S,n}^2 \rho_n \nabla \cdot \mathbf{v}_n$
(6) $\nabla \cdot \mathbf{B} = 0$

Collisional coupling:

- Drag coefficient: $\gamma_D = \frac{1}{2m_n} \sqrt{\frac{16k_BT}{\pi m_i}} \sigma_{in}$
- Ion-neutral collisions: $\nu_{in} = \gamma_D \rho_n$
- Neutral-ion collisions: $\nu_{ni} = \gamma_D \rho_i$

•
$$\chi = \rho_n / \rho_i \implies \nu_{in} = \chi \nu_{ni}$$

HEPP PROGRESS TALK 12

LINEAR WAVES - ALFVÉN MODE

• Helicity perturbations:

$$\Gamma_{i} = (\nabla \times \mathbf{v}_{i}) \cdot \mathbf{e}_{z} = ik_{x}v_{i,y} - ik_{y}v_{i,x}$$
$$\Gamma_{n} = (\nabla \times \mathbf{v}_{n}) \cdot \mathbf{e}_{z} = ik_{x}v_{n,y} - ik_{y}v_{n,x}$$

• Rewrite 2FMHD-eq's in terms of $\Gamma_i \& \Gamma_n$

$$\frac{\partial^2 \Gamma_i}{\partial t^2} + \rho_n \gamma_D \frac{\partial \Gamma_i}{\partial t} + k^2 \cos^2 \theta c_{Ai}^2 \Gamma_i = \rho_n \gamma_D \frac{\partial \Gamma_n}{\partial t}$$
$$\frac{1}{\rho_i} \frac{\partial \Gamma_n}{\partial t} + \gamma_D \Gamma_n = \Gamma_i$$

• Dispersion via normal mode analysis:

$$\omega^{3} + i(1+\chi)\nu_{ni}\omega^{2} - k_{z}^{2}c_{Ai}^{2}\omega - i\nu_{ni}k_{z}^{2}c_{Ai}^{2} = 0$$
$$\iff \left(\frac{k_{z}c_{A}}{\omega}\right)^{2} = \frac{\omega + i(1+\chi)\nu_{ni}}{\omega + i\nu_{ni}}$$

Alfvén velocity:• Ion-Alfvén velocity: $c_{Ai} = \frac{B^2}{\sqrt{4\pi\rho_i}}$ • Loaded-Alfvén velocity: $c_{Ai} = \frac{B^2}{\sqrt{4\pi(\rho_i + \rho_n)}}$

Decoupling

• Decoupling approximation:

$$k_{dec}^- v_A \sim \nu_{ni}$$
 & $k_{dec}^+ v_{Ai} \sim \nu_{in}$

• Exact solution:

$$k_{\parallel}^{\pm} = \frac{\nu_{ni}}{c_{Ai}} \left[\frac{\chi^2 + 20\chi - 8}{8(1+\chi)^3} \pm \frac{\chi^{1/2}(\chi - 8)^{3/2}}{8(1+\chi)^3} \right]$$

Solved for $\omega_R = 0$ with $\vec{k} = k_{\parallel} \hat{e}_B$

LINEAR WAVES - ALFVÉN MODE

Parameter:

• $\rho_i = 0.001, \, \rho_n = 0.999$ • $c_{Sn} = 2, c_{Si} = 1 \times \text{km/s}$

$$\boldsymbol{\beta} = 0.1 \& \gamma_D = 25$$

LINEAR WAVES - MAGNETOSONIC MODE

• Compressibility perturbations:

$$\Delta_{i} = \nabla \cdot \mathbf{v}_{i} = ik_{x}v_{i,x} + ik_{y}v_{i,y} + ik_{z}v_{i,z}$$
$$\Delta_{n} = \nabla \cdot \mathbf{v}_{n} = ik_{x}v_{n,x} + ik_{y}v_{n,y} + ik_{z}v_{n,z}$$

• Rewrite 2FMHD-eq's in terms of $\Delta_i \& \Delta_n \&$ Normal mode analysis:

$$D(\omega)\Delta_i = 0$$
$$i\nu_{ni}\omega \frac{D(\omega)}{D_n(\omega)}\Delta_n = 0$$

$$\begin{split} D(\omega) &= D_i(\omega)D_n(\omega) + D_c^2(\omega) \\ D_i(\omega) &= \omega^3(\omega + i\nu_{in}) - \omega^2 k^2 (c_{Ai}^2 + c_{S,i}^2) + \frac{\omega + i\nu_{ni}}{\omega + i(\nu_{in} + \nu_{ni})} k^4 c_{Ai}^2 c_{S,n}^2 \\ D_n(\omega) &= \omega(\omega + i\nu_{ni}) - k^2 c_{S,n}^2 \\ D_c^2(\omega) &= \frac{\omega\nu_{ni}\nu_{in}}{\omega + i(\nu_{in} + \nu_{ni})} \left[\omega^3(\omega + i(\nu_{in} + \nu_{ni})) - k^4 c_{Ai}^2 c_{S,n}^2 \cos^2 \theta \right] \end{split}$$

Effective sound velocity:

$$c_{S,eff}^2 \approx \frac{c_{S,i}^2 + \chi c_{S,n}^2}{1 + \chi}$$

 $n \cos^2 \theta$

LINEAR WAVES - MAGNETOSONIC MODE

- $\rho_i = 0.001, \, \rho_n = 0.999$
- $c_{Sn} = 2, c_{Si} = 1 \times \text{km/s}$

•
$$\beta = 0.1 \& \gamma_D = 25$$

BASIC SETUP FOR LIN. PERTURBATION-SIM'S

• Trying to probe "frequency response" of the (twofluid) system

• Quasi 1D: $L_{\parallel} = 128 \times L_{\perp}$

➡ Boundary-Conditions:

- Transverse: Periodic
- Longitudinal: Outflow ►

 \rightarrow MB: 1x1x256 MBs à 32³ px appears to be most efficient on full 4x A100-Node

• Drive any time dependent perturbation, at *xy*-face of box at

 \rightarrow Primarily *xz*-polarization

LINEAR TESTING (FULLY IONIZED/MHD)

Transverse Perturb.

LINEAR TESTING (2FMHD)

- 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75
- -1.00

ASYMPTOTIC TESTING - TRANSVERSE δv_{\perp}

Low-Freq. Limit ($\omega = 0.01$)

High-Freq. Limit ($\omega = 100$)

- $\rho_i = 0.1, \, \rho_n = 0.9$
- $c_{Sn} = 2$, $c_{Si} = 1 \times \text{km/s}$

$$\bullet \quad \beta = 0.1 \& \gamma_D = 25$$

COMPARING WITH ANALYTICS - TRANSVERSE δv_{\perp}

Parameter:

$$\rho_i = 0.001, \rho_n$$

•
$$c_{Sn} = 2, c_{Si} = 1 \times$$

•
$$\beta = 0.1 \& \gamma_D = 25$$

•
$$\theta = 0^{\circ}$$

GAP TESTING - "DISPERSION RELATION"

- $\rho_i = 0.001, \, \rho_n = 0.999$
- $c_{Sn} = 2$, $c_{Si} = 1 \times \text{km/s}$

•
$$\beta = 0.1 \& \gamma_D = 25$$

ASYMPTOTIC TESTING - LONGITUDINAL δv_{\parallel} (2FMHD)

Low-Freq. Limit ($\omega = 0.01$)

High-Freq. Limit ($\omega = 100$)

•
$$\rho_i = 0.1, \, \rho_n = 0.9$$

•
$$c_{Sn} = 2, c_{Si} = 1 \times$$

•
$$\beta = 0.1 \& \gamma_D = 25$$

F(t)

Parameter:

- $\rho_i = 0.001, \, \rho_n = 0.999$
- $c_{Sn} = 2, c_{Si} = 1 \times \text{km/s}$ $\beta = 0.1 \& \gamma_D = 25$

Excite sum of waves with randomized phases

$$f(t) = \sum_{k=1}^{N} \omega_k \cos(\omega_k t + \phi_k), \ \omega_k = \frac{2\pi v_A}{L(k+1)}, \ N = \frac{L}{2\pi v_A} 10^3$$

$$\implies \omega_0 > \frac{2\pi v_A}{L}, \ \omega_N \gtrsim \frac{1}{\Delta t}$$

OUTLOOK - DISPERSION

- $\rho_i = 0.001, \, \rho_n = 0.999$
- $c_{Sn} = 2$, $c_{Si} = 1 \times \text{km/s}$

•
$$\beta = 0.1 \& \gamma_D = 25$$

OUTLOOK - TURBULENT SIMULATIONS

Density

neutrals

Velocity

B-Field

- $\rho_i = 0.001, \, \rho_n = 0.999$
- $c_{Sn} = 2$, $c_{Si} = 1 \times \text{km/s}$

•
$$\beta = 0.1 \& \gamma_D = 25$$

OUTLOOK - TURBULENT SIMULATIONS

- $\rho_i = 0.001, \, \rho_n = 0.999$
- $c_{Sn} = 2, c_{Si} = 1 \times \text{km/s}$

•
$$\beta = 0.1 \& \gamma_D = 25$$

THANK YOU FOR YOUR ATTENTION!

#