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Fusion on Earth
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 Most viable reaction for fusion reactors:

𝐷 + 𝑇 → 4 𝐻𝑒 3.52 𝑀𝑒𝑉 + 𝑛 (14.1 𝑀𝑒𝑉)

 For energy producing 𝑛𝑖𝑇𝑖𝜏𝐸 needs to be 
above a certain limit.

 Magnetic confinement: torus shaped 
plasma, twisted magnetic lines

𝑛𝑖 ∝ 1019 − 1020 𝑚−3

𝑇𝑖 ∝ 10 𝑘𝑒𝑉 ∝ 100 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 ℃
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Wendelstein 7-X stellarator
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 Twisted plasma shape
 Changing plasma cross section
 Carbon plasma facing components
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Impurities in the plasma:
 Entering the plasma from wall components.
 Performance losses by dilution and radiation. Need for control.
 Understanding of behavior is crucial.



Impurity transport
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 Neoclassical transport: collisional transport in toroidal geometry

 Anomalous transport: additional transport effects (e.g. turbulence)
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 Neoclassical models predict impurity accumulation in the core plasma 
for W7-X, which can affect the performance through power losses.

Is impurity accumulation observed during specific plasma settings?
What dominates the impurity transport during different configurations?

[Burhenn, Nucl. Fusion (2009) 065005]



Impurity transport
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𝜕 𝑛𝑖𝑚𝑝

𝜕 𝑡
= −𝛻 Γ𝑖𝑚𝑝 + 𝑄𝑠𝑜𝑢𝑟𝑐𝑒𝑠 + 𝑄𝑠𝑖𝑛𝑘𝑠

 Impurity transport flux: Γ𝑖𝑚𝑝 = −𝐷
𝜕𝑛𝑖𝑚𝑝

𝜕𝑟
+ 𝑣 𝑛𝑖𝑚𝑝

 Transport coefficients: diffusion (𝐷) and convection velocity (𝑣)

 In steady state scenario in the core: Γ𝑖𝑚𝑝 = 0
𝑣

𝐷
=

1

𝑛𝑖𝑚𝑝

𝜕𝑛𝑖𝑚𝑝

𝜕 𝑟

Tool:
1 dimensional impurity transport code pySTRAHL. Changing the input 
diffusion (𝐷) and convection velocity (𝑣) to match the output carbon 
density with the experimental profiles.

[B. Geiger, C. Swee]

Lilla Vanó | PhD defense TU Berlin | June 17th, 2022



Impurity observation
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 Impurity properties obtained from measured spectral line.

 Coronal Equilibrium: models the temperature dependence 
of the ionisation stages.



Passive Spectroscopy - Measurement
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 Measures the line integrated intensity of 𝐶5+ (529.07 𝑛𝑚) with 
multichannel mirror spectrometer.

 Inversion (Forward modelling) to assess radial distribution of emission 
intensity that gives comparable line integrated intensity.
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𝝆



Passive Spectroscopy - Inversion
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 Every flux surface is represented by a value of 𝜌. Array of 𝜌 determined 
for each LOS given the flux surfaces the LOS looks through.

 The modelled emissivity is parametrised to be a double Gaussian shape
 Atomic processes leading to 𝐶5+: 

Electron impact excitation: 𝐶5+ + 𝑒− → 𝐶5+ ∗ + 𝑒−

Charge exchange: 𝐶6+ + 𝐻0 → 𝐶5+ ∗ +𝐻+
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Passive Spectroscopy – Calculation
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 Inner peak is radially deeper than either of the source particles is 
expected.

 Strong radial anomalous transport could carry the 𝐶5+ ions further in 
before they are ionised.

 Preliminary radiation calculation supports this.
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Neoclassical Neoclassical + strong anomalous diffusion



Charge eXchange Recombination Spectroscopy
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 In the plasma core: only fully-ionized ions, no radiation to be detected
 Neutral Beam Injection (NBI): controllable external neutral source to the 

charge exchange process.

 Spatially localised data available.
 Separation of the active and passive component is needed.

𝐻0 + 𝐶6+ → 𝐻+ + 𝐶5+ ∗

 Main spectrometer: ILS (𝐶5+, 𝐻𝛼)
 This work focuses on carbon density 

calculated from the measured 𝐶5+

intensity.
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Carbon density calculation
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 Calculation of the carbon density is possible using the 𝐻𝛼 and 
𝐶5+ intensities measured by the ILS.

 Intersection integral between the NBI and the LOS can be 
eliminated, as the two detectors share the same LOS-s.

𝑛𝐶 =
𝐼𝐶𝑋
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Outline of results
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 ECRH dominated plasma scenarios
 NBI dominated plasma scenarios
 Mixed heating plasma scenarios
 High performance plasmas



ECRH dominated plasma scenario
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Flat carbon profile throughout the radius, no impurity accumulation.
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ECRH dominated plasma scenario
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 Strong anomalous diffusion was found in these plasmas based on 
pySTRAHL simulations.

 This outward diffusion keeps the profiles flat against the neoclassical 
convection.

[Geiger, Nucl. Fusion (2019) 59 047009]
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NBI dominated plasma scenario
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 Heating switch at 𝑡 ≈ 1𝑠

 ECRH turned back on at 𝑡 ≈ 3𝑠

 𝑛𝑒 starts peaking in the core
continuously.

 𝑛𝐶 peaking takes off around 1𝑠
into the pure NBI phase.
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NBI dominated plasma scenario
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 Flat 𝑛𝐶 profiles in ECRH phase

 𝑛𝐶 peaking starts slowly after 
heating switch at 1𝑠
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Carbon transport in NBI dominated plasma

17

pySTRAHL simulation:

 One simulation for the whole discharge

 Background kinetic profiles every 100𝑚𝑠 (from experiment)
 Neoclassical 𝐷 and 𝑣 profiles corresponding to the given kinetic 

profiles (calculated from Neotransp)
 Anomalous 𝐷 profile from ECRH plasma studies

 Edge and source parameters set to match 𝑛𝐶 level at the edge of 
the confined plasma at the beginning of the experiment.
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Simulation for ECRH phase
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 High turbulent 𝐷
 Keeps 𝑛𝐶 profile flat as expected.
 𝑣 is assumed to be neoclassical, 

high 𝐷 is dominating the transport

[Geiger, Nucl. Fusion (2019) 102654]
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Simulation for NBI phase with neoclassical D
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Gives carbon peaking for 𝜌 < 0.5 with similar quantitative 
increase in time as experiment.  

ExperimentTransport coefficients Simulation
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Simulation for NBI phase with an. D for ρ>0.5
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Profile flattens out for 𝜌 > 0.5 and stops decreasing in time.    

ExperimentTransport coefficients Simulation
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Simulation for NBI phase with an. D for ρ<0.5
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 S: ratio of simulated diffusion level and full anomalous diffusion
 No significant peaking observed for S > 5%
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Combined ECRH and NBI heating
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 Carbon flushed out from the 
core

 Barrier-like gradient remains 
at     𝜌 = 0.4 − 0.5

 Core turbulence becomes 
significant again.
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High performance plasma scenario
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 Achieved with continuous pellet injections.

 Triple product: 𝑛𝑖𝑇𝑖𝜏𝐸 =
𝑛𝑖

𝑛𝑒
𝑛𝑒𝑇𝑖

𝑊𝑑𝑖𝑎

𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔

 Comparing the performance of different machines on the way to 
net energy producing fusion reactors.

 Reported highest triple product for stellarators: 

 To measure the amount of impurities: 𝑍𝑒𝑓𝑓 =
σ𝑛𝑗𝑍𝑗

2

σ𝑛𝑗𝑍𝑗

𝑛𝑖𝑇𝑖𝜏𝐸 = 6.46 ∗ 1019 𝑚−3𝑘𝑒𝑉 𝑠

Lilla Vanó | PhD defense TU Berlin | June 17th, 2022

[Pedersen, Plasma Phys. Control. Fusion (2019) 61 014035]



Triple product with core impurity measurements

24

𝑇𝑖 = 3.08 𝑘𝑒𝑉
𝑊𝑑𝑖𝑎 = 1.14 𝑀𝐽
𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = 4.65 𝑀𝑊

𝑛𝑒 = 8.55 ∗ 1019 𝑚−3

𝐶𝐶 = 0.6%
𝑍𝑒𝑓𝑓 = 1.17

𝑛𝑖𝑇𝑖𝜏𝐸 = 6.26 ∗ 1019 𝑚−3𝑘𝑒𝑉 𝑠

𝐶𝐶 = 0.6%, 𝐶𝑂 = 0.6%
𝑍𝑒𝑓𝑓 = 1.48

𝑛𝑖𝑇𝑖𝜏𝐸 = 6.00 ∗ 1019 𝑚−3𝑘𝑒𝑉 𝑠

Supports the recorded record triple product for stellarators.

Measured global parameters:

With measured carbon concentration:

Assuming same oxygen concentration:
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Summary
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 Impurity transport needs to be understood for their control to 
achieve reactor like plasma conditions.

 𝑛𝐶 was measured at W7-X by the CXRS diagnostic.
 Carbon transport simulations were done based on the 

experimental 𝑛𝐶 profiles.

 Passive Spectroscopy: only measuring carbon at the plasma 
edge, line integrated

 CXRS: measuring carbon in the plasma core, spatially resolved
 ECRH plasmas: turbulent dominated impurity transport
 NBI plasmas: neoclassical impurity transport in the core, 

causes accumulation
 Mixed heating plasma: turbulent core keeps the 

accumulation lower
 High performance plasmas: 𝑛𝐶 profiles used for validation


