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_ &y Max-Planck-Institut
Fusion on Earth N fiir Plasmaphysik

= Most viable reaction for fusion reactors:

D+T —*He(3.52MeV) +n (14.1 MeV)

" For energy producing n;T;Tg needs to be
above a certain limit.

- Magnetic confinement: torus shaped
plasma, twisted magnetic lines

magnetic

field lines ﬁéé‘i! . ni X 1019 — 1020 m_3
magnetic 77 -
flux surfaces Ti x 10 keV x 100 mllllOn °C
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_ peaeistein I\_(Iax—PIanck—Institut
Wendelstein 7-X stellarator N fir Plasmaphysik

Cryostat

Planar coils

= Twisted plasma shape
= Changing plasma cross section
= (Carbon plasma facing components

Y=

Non-planar coils
Plasma vessel

Plasma surface

Impurities in the plasma:

= Entering the plasma from wall components.

= Performance losses by dilution and radiation. Need for control.
= Understanding of behavior is crucial.
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Impurity transport N

Max-Planck-Institut
fir Plasmaphysik

= Neoclassical transport: collisional transport in toroidal geometry

= Anomalous transport: additional transport effects (e.g. turbulence)

= Neoclassical models predict impurity accumulation in the core plasma
for W7-X, which can affect the performance through power losses.

[Burhenn, Nucl. Fusion (2009) 065005]

Is impurity accumulation observed during specific plasma settings?
What dominates the impurity transport during different configurations?
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Impurity transport (@ W

- ot -V Fimp + Qsources T Usinks
a .
" Impurity transport flux: Iy, = —D 7;‘:”” + U Ny

= Transport coefficients: diffusion (D) and convection velocity (v)

1% 1 animp

= In steady state scenario in the core: I}, = 0 2

TOOI . [B. Geiger, C. Swee]

1 dimensional impurity transport code pySTRAHL. Changing the input
diffusion (D) and convection velocity (v) to match the output carbon
density with the experimental profiles.
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Impurity observation

Wendelstein

=" |Impurity properties obtained from measured spectral line.

= Coronal Equilibrium: models the temperature dependence

of the ionisation stages.

{orbitrary unils)y

&
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Passive Spectroscopy - Measurement

Wendelstein

= Measures the line integrated intensity of C°>* (529.07 nm) with
multichannel mirror spectrometer.
= |nversion (Forward modelling) to assess radial distribution of emission
intensity that gives comparable line integrated intensity.
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Passive Spectroscopy - Inversion N W

= Every flux surface is represented by a value of p. Array of p determined
for each LOS given the flux surfaces the LOS looks through.

= The modelled emissivity is parametrised to be a double Gaussian shape

= Atomic processes leading to C°™:

Electron impact excitation: C°* +e~ = [C°T]* + e
Charge exchange: C®* + H? — [C>*]* + HT

20171207.006,t = 3.05 s

— Source 1l
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== Sum
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Passive Spectroscopy — Calculation

emissivity [W/m’]

Wendelstein

Inner peak is radially deeper than either of the source particles is

Strong radial anomalous transport could carry the C>* ions further in

Neoclassical + strong anomalous diffusion
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= Preliminary radiation calculation supports this.
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Charge eXchange Recombination Spectroscopy faa W

= |n the plasma core: only fully-ionized ions, no radiation to be detected
= Neutral Beam Injection (NBI): controllable external neutral source to the
charge exchange process.

H® + C®* —» H* + [C>*]

= Spatially localised data available.
=  Separation of the active and passive component is needed.

§ = Main spectrometer: ILS (C°*, H%)

Ear) = This work focuses on carbon density

calculated from the measured C>*
intensity.
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Carbon density calculation N W

=  Calculation of the carbon density is possible using the H* and
C>* intensities measured by the ILS.

ICX < an Z QCX beam dl IBES jne QBES beam dl
Los E=EE/2E/3 LOS

= |ntersection integral between the NBI and the LOS can be
eliminated, as the two detectors share the same LOS-s.

ICX

BES nCX
IE QE

ZE=E,E/2,E/3 BES
E

Ne = ne
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Outline of results

ECRH dominated plasma scenarios
= NBI dominated plasma scenarios
Mixed heating plasma scenarios
High performance plasmas
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ECRH dominated plasma scenario N W
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Flat carbon profile throughout the radius, no impurity accumulation.
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ECRH dominated plasma scenario faa W

— Anomalous 1024
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= Strong anomalous diffusion was found in these plasmas based on
pySTRAH L simu |ati0n5. [Geiger, Nucl. Fusion (2019) 59 047009]

= This outward diffusion keeps the profiles flat against the neoclassical
convection.
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NBI dominated plasma scenario N W
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NBI dominated plasma scenario N W
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Carbon transport in NBl dominated plasma faa W

pySTRAHL simulation:

= One simulation for the whole discharge

= Background kinetic profiles every 100ms (from experiment)

= Neoclassical D and v profiles corresponding to the given kinetic
profiles (calculated from Neotransp)

= Anomalous D profile from ECRH plasma studies

= Edge and source parameters set to match n. level at the edge of
the confined plasma at the beginning of the experiment.
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Simulation for ECRH phase
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Wendelstein

=

= High turbulent D Geiger, Nucl. Fusion (2019) 102654]
= Keeps n. profile flat as expected.
=  pisassumed to be neoclassical,

high D is dominating the transport
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Simulation for NBI phase with neoclassical D N W
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Gives carbon peaking for p < 0.5 with similar g
increase in time as experiment.
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Simulation for NBI phase with an. D for p>0.5
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Profile flattens out for p > 0.5 and stops decreasing in time.
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Simulation for NBI phase with an. D for p<0.5 N W

= S: ratio of simulated diffusion level and full anomalous diffusion
= No significant peaking observed for S > 5%
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Combined ECRH and NBI heating —
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High performance plasma scenario N W
= Achieved with continuous pellet injections.

. n;
» Triple product: n;T;7p = —n,T;
Ne Pheating

= Comparing the performance of different machines on the way to
net energy producing fusion reactors.

= Reported highest triple product for stellarators:
n;T;Tp = 6.46 x 1019 m™3keV s

[Pedersen, Plasma Phys. Control. Fusion (2019) 61 014035]

2
LN Zj

" To measure the amount of impurities: Z,rr =
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Triple product with core impurity measurements

Measured global parameters:

T, = 3.08 keV

Wy, = 1.14 M]
Pheating = 4.65 MW
n, = 8.55 % 10 m=3

With measured carbon concentration:

Assuming same oxygen concentration:
Cc = 0.6%, Cy = 0.6%

Wendelstein
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Supports the recorded record triple product for stellarators.
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Wendelstein

Summary Y

" |mpurity transport needs to be understood for their control to
achieve reactor like plasma conditions.

" n. was measured at W7-X by the CXRS diagnostic.

= Carbon transport simulations were done based on the
experimental n. profiles.

= Passive Spectroscopy: only measuring carbon at the plasma
edge, line integrated
= CXRS: measuring carbon in the plasma core, spatially resolved
" ECRH plasmas: turbulent dominated impurity transport
= NBI plasmas: neoclassical impurity transport in the core,
causes accumulation
= Mixed heating plasma: turbulent core keeps the
accumulation lower
* High performance plasmas: n. profiles used for validation
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