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1. The HSX stellarator is currently being upgraded.

➮ HSX currently runs with two 28 GHz gyrotrons at fundamental ordinary at B = 1 Tesla, with
a total of 100 kW of heating power.

➮ A new 70 GHz gyrotron will be installed that will provide up to 300 kW of power for up to
100 ms at B =1.25 Tesla.

➮ This upgrade will allow operation at three times higher plasma densities (up to 2.0×1019/m3)
with an ECH absorption efficiency of ∼ 90%.

➮ The post-upgrade experimental program of HSX emphasizes areas that exploit these new ca-
pabilities:

– Exploring higher ion temperature and lower neutral density regimes
– Optimizing the magnetic geometry to vary turbulent transport
– Measuring plasma flows and electric fields at higher ion temperatures, more negative elec-

tric fields, and lower neutral damping
– Measuring and understanding impurity transport

2. Upgrade is expected to be completed by the end of this year.

➮ The gyrotron is onsite, filament and vacuum levels have been tested and found acceptable.

➮ The new 60 kV 20A gyrotron power supply is onsite, installed and tested.

➮ The main components of the transmission line have been designed and fabricated.

➮ The motor/generators have been refurbished and upgraded to provide the needed power.

➮ The structural and electrical modifications to HSX are on track.

➮ A PLC-controlled vessel bake-out system is being implemented to aid high density, high
power discharges.

➮ Improvements in diagnostic and support systems are progressing rapidly.

➮ To ensure that no significant degradation of the magnetic field structure arises during 1.25 T
operation, a flux surface mapping system is being installed.
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3. First set of campaigns will explore higher ion temperature
and lower neutral density regimes.

➮ As a result of the increase in ion-electron coupling, the core ion temperature is calculated
to increase from the present value of ∼50 eV to more than 150 eV, moving closer to a low
collisionality regime. (see Fig. 1)

➮ Because of the very short connection lengths (the effective transform is ∼3) it is easier to
access the low collisionality regime in HSX than any other experiment.

➮ The higher plasma density operation is also calculated to reduce the density of background
neutrals.

➮ Higher density and lower charge exchange losses enable ion transport studies.

➮ First set of campaigns will be to understand how to lower the ion collisionality to explore
whether the QHS configuration shows reduced ion neoclassical transport.

Figure 1: Calculated profiles for upgrade plasma with 70 GHz gyrotron versus old experimen-
tal data using 28 GHz gyrotron. Upgrade profiles are calculated based on ISS04 scaling of the
energy confinement time. Also shown is the ion collisionality as a function of ion temperature
at the mid-radius of HSX.

4. Auxiliary coils will be used to optimize the magnetic geome-
try to vary turbulent transport (See invited talk by M. Gerard).

➮ GENE simulations show that QHS config-
urations with increased plasma elongation
provide reduced TEM growth rates.

➮ Several configurations with reduced growth
rates are identified for experiments.

Figure 2: TEM growth rates as a function of
elongation. Colorbar gives normalized pre-
cessional drift of trapped electrons.

5. Upgrade enables measurement of plasma flows and electric
fields at higher ion temperatures, more negative electric fields,
and lower neutral damping.

➮ Due to the reduced flow damping from the neutrals, there should be higher flows in the direc-
tion of symmetry, as well as the parallel flow.

➮ The neoclassical radial electric field is calculated to be more negative in the core. Ambipolar
solution is away from the ion resonance. (See Fig. 3).

➮ Measurements of intrinsic ion parallel flow and radial electric field will continue, using
CXRS.

➮ Biased electrode experiments will continue.

– To determine whether there are damping terms in addition to parallel viscosity and neutral
drag.

– To demonstrate the effect of the parallel flow on the ion resonant electric field (see Fig. 4)

➮ Collaboration with Kyoto University will continue on modeling and experiments to under-
stand the mechanism of toroidal flow generation by ECH driven currents.

Figure 3: [Left] Neoclassical Er calculated
by PENTA for pre and post upgrade plasma
parameters. Also shown experimental Er

for the pre-upgrade measured using CXRS.
[Right] Radial particle flux at r/a=0.2

Figure 4: The resonant electric field as a
function of the parallel flow for three differ-
ent magnetic configurations and three differ-
ent neutral densities. The red line is the an-
alytic expression and the data points are the
steady-state solutions to the momentum bal-
ance equations.

6. Impurity transport experiments with Laser Blow-off (LBO)
will continue.

➮ LBO injection experiments in the present 1 Tesla
operation showed very strong diffusive, turbulent
transport of impurities (Fig. 5). This might, how-
ever, change during high density operation with
negative radial electric fields and possible reduced
levels of turbulence.

➮ We will explore the impurity transport in the turbu-
lence optimized configurations to compare with the
measurements already made in the QHS configura-
tion.

➮ While previous experiments employed only alu-
minum injections, additional impurities such as
boron will be used for the upgrade.

➮ Using a biased electrode, we will investigate how
the convective velocity corresponds to the radial
electric field.

Figure 5: [Top]The experimental
photodiode signals and STRAHL

simulated signals are plotted as a
function of time. [Bottom] Impu-
rity decay time as a function of the
absorbed power. The red line rep-
resents τ ∼ P−1.1.
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