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Challenges of magnetized fusion plasma modeling

e ultimate goal — to capture plasma dynamics in all temporospatial scales.
Edge, or boundary plasma is even more complicated than core plasma

» Characteristics of boundary plasma impose constraints on numerical models.
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Highly anisotropic magnetized plasma

o Long simulation time to get steady-state solution due to separation of time scales

o Accurate parallel derivative to prevent numerical diffusion pollution

O(1) fluctuation and shorter characteristic length

o “full-f”, global formulation is required; poloidally nonuniform dynamics

Change of magnetic topology

o Closed flux surface to open field-lines in tokamak; closed flux surface to a chaotic layer in stellarator
Flux driven system (BVP for a steady-state solution)

o Appropriate source and sink, need to account for realistic wall and divertor boundary and BCs
Neutral and atomic physics is important near the divertor/wall

o Neutrals to provide particle, momentum and energy source/loss, impurity for radiation cooling, dilution
effect in transport coeffs., ...



Stochasticity is part of boundary plasma transport

» Separatrix is susceptible to magnetic perturbation; and a chaotic layer is inherent at
stellarator boundary.
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Poincare plots of DIlI-D electromagnetic turbulence Poincare plots of W7-X with various island width
simulation with BOUT++ at various stages [Zhu, 2023] [Geiger, 2020]

( How to model plasma transport dynamics in a chaotic field? )
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Choice of coordinate (or, mesh) for boundary plasma models

» Field-line aligned (FA) » Flux coord. indept. (FCI) > Direct approach (DA)

= Computationally efficient = Versatile for all config. = Straightforward
= Treatment for x-point and = Bfield tracing / indexing is = Need ultra-high resolution
stochastic field expensive and complicate
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= Example: BOUT++, UEDGE, = Example: GDB, GRILLIX, = Example: GBS
SOLPS, EMC3 BSTING, ...
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Field-line aligned approach (indirect)

» Direct simulation of boundary plasma in stochastic field is possible (e.g., EMC3), but
grid generation can be quite challenging.

» Indirect approach adopts the common electromagnetic treatment in drift-reduced
model derivation, i.e., the semi-electromagnetic approximation

Perturbed magnetic field in terms of perturbed vector potential B=V x A
With Coulomb gauge condition V- A =0, then A /L ~ |AL|/L.
For strongly magnetized (anisotropic) plasma, Ly > L, ,s0 A;/|A. |~ Ly/L, > 1

Similarly, - A AL L3
Bu _[(VxAu| mtE th
> o A L

Therefore, drift-reduced Braginskii model only keeps the dominantterm B = B, = V x (A||BO>

Can be further simplified as B ~ VA, x by, with Lg > L, assumption
Parallel gradient operator

. . bo flutter term, an external perturbed B field
V[ = (bo + b) -V f=by-Vfl- 7 X VA -Vf thus can be included via an additional parallel
vector potential A
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BOUT++ simulation of KSTAR RMP shot
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» Coupling GPEC result to

BOUT++ simulations

Generalized Perturbed
Equilibrium Code (GPEC) solve
plasma equilibrium with non-
axisymmetric B field (i.e.,
tokamak discharge with RMPs).

Compute perturbed (or, RMP)
field as A = A - b, from GPEC;

Take the toroidal Fourier
components;

Map from GPEC’s cylindrical

coordinate (rectangular mesh)
to BOUT++'s field-aligned

coordinate (twisted 3D mesh);
Inverse Fourier transform.



Outer divertor field-line tracing analysis

» Field-line tracing analysis (within BOUT++) shows as the RMP strength increases
" maximum connection length increases (i.e., more field-lines hitting the inner core bndry.)
= penetration depth increases and striation angle becomes larger

=" most perturbed location moves outward from separatrix
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KSTAR RMP simulation

> Initial BOUT++’s 3D thermal

transport simulation with
externally applied RMPs

= Although weak (due to artificially
reduced RMP amplitude), typical
RMP features such as the

homOCIinic tangle nearthe X- 12 14 16 18 2 22 -‘1;2 14 16 18 2 22 0
point and the striation pattern on

qin (MW/m?) otk 20 (MW/m?)

Qin. 20 (MW/m?
1

the divertor heat load footprint ) 4
do appear in the simulation. )

= On-going project to (1) add more  ° : °
terms/equations in the BOUT++ ) .
model, (2) cross-benchmark with —
EMC3, and (3) validate result with ) . o 1 0
experimental measurement.
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Implications of indirect field-line alighed modeling

A

. A b
Vif=(Bo+b)-Vf=by- V- x VA VS

» The assumptions used in semi-electromagnetic approximation are meant for self-
induced turbulence; they are not necessarily valid for an externally applied
perturbation.

= L, > L, is based on flute assumption k; =~ 0 , may become marginal for low n RMP field.
|

» But perhaps a more important and yet also more subtle implication is from the first
term — parallel derivative along the “unperturbed” field-line.

= Numerically, to avoid “perpendicular pollution”, any segment of perturbed field-line should not
deviate too much from the unperturbed field-line.

dx B.Vz O(Ax)
=

- _ Ay < Ba}l_1
ds  |Bo + Bj

he |BO

= |n other words, a larger perturbation level requires a higher resolution — with external 3D field,
transport simulations may need similar or even higher resolutions than turbulence simulations.
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Flux Coordinate Independent (FCl) approach

» |In principle, flux coordinate independent (FCI) and n[10'9 M att=4389 us .
direct approaches don’t have this issue — background o _ |,
B field, stochastic or not, is prescribed and taken into - o
account for by design, I
" |n the past decade, new boundary plasma models based on P
FCl approach are developed for both tokamaks (e.g., GDB, E
GRILLIX) and stellerators (BSTING). .
5
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Half-torus density snapshot of C-Mod IWL EM turbulence Poloidal density snapshot of AUG EM turbulence
simulation with GDB code [Zhu, 2018] simulation with GRILLIX code [Zholobenko, 2024]
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BSTING - FCI extension of BOUT++

» BSTING — BOUT++ to Simulate Turbulence in Non-axisymmetric Geometries,
designed for stellarator boundary modeling
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Strong scaling for a 64x36x256 W7-X mesh
54 56 58 6.0 6.2 6.4 0
R(m) B Shanahan, B Dudson and P Hill, “Fluid simulations of plasma filaments in
. . Il i ith BSTING” . . 1
Transport test on W7-X boundary configuration ?;zlagr)ator geometries with BSTING” Plasma Phys. Control. Fusion 61 025007

uL. Zoidberg grid generator: https://github.com/boutproject/zoidberg
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BSTING turbulence simulation of W7-X

» Electrostatic, isothermal (10 eV)
turbulence simulation of W7-X

on
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B. Shanahan, D. Bold, and B. Dudson, “Global fluid turbulence
simulations in the SOL of a stellarator island divertor”,
arXiv:2403.18220 accepted

= 1ms takes 30,000 core-hours on a
68x128x256 mesh.

( Question: How confident are we with FCl approach? e.g., accuracy, resources, potential pitfalls? )

L

LLNL-PRES-862769


https://arxiv.org/abs/2403.18220

Let’s dive into the details

( The fundamental difference is the treatment of parallel derivatives (e.g., V|| f = b-Vf). )

» Field-line aligned (FA) » Flux coord. indept. (FCI) > Direct approach (DA)

of
- LY of Vif= > buir
Vit = 75 5, Vif =2 i O
= Straightforward 1D = 1D or 2D interpolation, = Summation of weighted
calculation (i.e., before 1D calculation (i.e., derivatives in all directions
“aligned”). “local-aligned”). (i.e., “non-aligned”).
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Resolution analysis

» How many grid points are needed to model (m,n) mode for each approach?

MtU

2 =
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z [""IFCI/DA mesh
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= h ~ O(10) points per mode number = Magnetized plasma is anisotropic: kj =~ m —ng =~ 0

_“_“ (" bakCl equivalent resolution
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Parallel thermal diffusion test

» In any fluid-based magnetized plasma model, (electron) parallel thermal conduction
term is often the most challenging term to deal with (e.g., time-step constraint,
perpendicular pollution issue).

3 0T

= A “thermal diffusion” test in a simplified geometry (e.g., a rational flux surface).

%:mnvﬁf with f(t) = 3B (f(t = 0)) exp(—kPrt)]

12 2 .
" Set f(t=0)=exp| —z—5 — ¢ 5 | »o1=95,04 = 0.5,x = 10. Same time integrator, etc.
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Analytical
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Thermal diffusion test results at t=10 (fix q=4)
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Accuracy vs Resolution
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(square) FA

- As expected, result gradually converges to
analytical solution as mesh resolution increases.

(triangle) FCI with various interp. opt.

- Linear and cubic interp. have substantial
perpendicular pollution.

- Sudden improvement with FFT interp., even
better than FA at higher-res — due to g times
higher “equivalent” field-line resolution.

- Indication of the accuracy is limited by
interpolation (or, poloidal resolution).

(circular) DA
- Similar pollution issue as FCI.
- Higher order scheme helps.



“FA-equivalent” FCI mesh

= Question: is there a better solution to improve FCI results besides increasing resolution?

Answer: Yes, the “FA-equivalent” FCI mesh.
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With the same number of grid points,
FCl can get the same accuracy as FA if

the interpolation is perfect.
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Thermal diffusion test results at t=10 (fix res.=64x64)
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Accuracy vs q (or pitch angle)
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= (square) FA

- Performance degradation as q increases — field-
line length (or, grid spacing) increases.

= (triangle) FCl with FFT interp.

- Sudden degradation, and 2rd and 4th order
derivatives give the same results at g=4 and
above — accuracy is limited by interp. — the
“effective” poloidal resolution decreases as
filament is closer to toroidally aligned.

= (circular) DA

- Same pollution issue and performance
degradation as g increases

[ FCl and DA can’t fully resolve X-point with finite resolution. ]




Summary

» Boundary plasma modeling is not an easy task, especially when the background
magnetic field is chaotic.

» A few viable ways; each one has some subtleties.

= Field-line aligned: robust, reliable, and computationally efficient; grid generation is challenging
for direct modeling, while for indirect approach, perturbation level dictates minimum resolution.

* Flux coordinate independent: accuracy (of parallel derivatives) depends on both poloidal and
toroidal resolutions; perpendicular pollution can be largely eliminated with careful meshing and
at least third-order interpolation; computationally-wise it is almost as efficient as field-line
aligned method.

» Direct approach: higher order schemes and/or high resolution is required to reduce/control
perpendicular pollution otherwise results can be deceptive — appears to be smooth and physical;
computationally most expensive.

= We are making progress; but it is important to understand the limitations of each approaches and
to perform convergence test and cross-benchmark.
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