

Qualification of W heavy alloys as plasma facing material

B. Boeswirth ^a, H. Greuner ^a, S. Elgeti ^a, T. Hoeschen ^a, K. Hunger ^a, H. Maier ^a, R. Neu ^a, ^b

^a Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

^b Technical University of Munich, TUM School of Engineering and Design, Boltmannstr.15, 85748 Garching, Germany

0 0

0 0

0 0

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Introduction

Motivation:

Areas with steady-state heat fluxes up to 10 MW/m² allow to consider W heavy alloys for fusion experiments with limited neutron-fluence, which allow to reduce the material and manufacturing costs. Beside improving the mechanical properties, the Ni/Cu or Ni/Fe matrix limits the thermal performance. Selected results of a series of experimental investigations on the thermomechanical and plasma physical suitability performed on W heavy alloy materials are presented.

Material	Melting	Thermal conductivity [W/(m·K)]	Supplier / Product name
	temperature [°C]		
W95Ni3.5Cu1.5	~1380	≥ 85	HC Starck Hermsdorf / HPM 1801
	(Ni-Cu matrix)	≥ 105	Plansee SE / Inermet® 180
		105	WHS Sondermetalle / WSM-
			W95NiCu
W97Ni2Fe1	~1440	≥75	HC Starck Hermsdorf / HPM 1850
	(Ni-Fe matrix)	≥ 85	Plansee SE / Densimet® 185
W	3420	164	MG Sanders
			Plansee SE

Important material properties and suppliers of investigated W heavy alloy materials and bulk W.

Outline of the paper

- Introduction
- Characterisation of W-Ni-Cu heavy alloy
 - Measurement of thermal conductivity
 - Change of microstructure and mechanical properties as result of heat treatment
- Results of high heat flux tests
 - Adiabatic loading of W, W-Ni-Cu and W-Ni-Fe samples
 - Steady-state loading of W, W-Ni-Fe and W-Ni-Cu material
- D retention measurement of W-Ni-Cu
- Conclusions

High heat flux test facility GLADIS

Beam parameters:

- Hydrogen neutral beam,
- Heat flux: 2 45 (90) MW/m², 150 mm FWHM, Ø 50 mm (95% q'_{max})
- Pulse length: 1 ms 45 s

Target cooling

 T_{in} 20 – 230 ± 0.5 °C, T_{out} max. 250 °C

Target diagnostics

- Water calorimetry, thermocouples
- Fast one-and two-colour pyrometers
- High-resolution CCD & IR cameras

Adiabatic loading of W, W-Ni-Cu and W-Ni-Fe samples (1)

Sample/	Geometry	Loading / maximum	Results
Supplier material	(length x width x height)	surface temperature	
W95NiCu	115 x 79 x 17 [mm³]	100 x 40 MW/m², 200 ms	Pronounced crack
WHS WSM-W95NiCu		T _{surface max.} = 1180 °C	network
W95NiCu	80 x 74 x 15 [mm³]	100 x 40 MW/m², 200 ms	Crack network
WHS WSM-W95NiCu	castellated	T _{surface max.} = 1130 °C	
W95NiCu	80 x 74 x 15 [mm³]	100 x 40 MW/m², 200 ms	Pronounced crack
Plansee INERMET [®] 180		T _{surface max.} = 1270 °C	network
W95NiCu	80 x 74 x 17 [mm ³]	100 x 40 MW/m², 200 ms	Pronounced crack
Plansee INERMET® 180	castellated	T _{surface max.} = 1250 °C	network
W97NiFe Plansee DENSIMET [®] 185	80 x 74 x 15 [mm³]	100 x 40 MW/m², 200 ms T _{surface max.} = 1280 °C	Some cracks on different areas of the surface
W97NiFe HC Starck HPM 1850	80 x 74 x 15 [mm³]	200 x 40 MW/m², 200 ms T _{surface max.} = 1300 °C	No cracks, roughening of surface in the center
W MG Sanders bulk W	95 x 75,8->77 x 15 [mm³]	100 x 40 MW/m², 200 ms T _{surface max.} = 1130 °C	No cracks

Table of selected test parameters and results for adiabatic loading experiments at GLADIS.

Adiabatic loading of W, W-Ni-Cu and W-Ni-Fe samples (2)

CCD camera images for different samples of one of the last cycles at end of pulse.

Adiabatic loading of W, W-Ni-Cu and W-Ni-Fe samples (2)

Microscopical image after GLADIS loading.

SEM cross section and EBSD scan of a W-Ni-Cu sample

Steady state loading of W heavy alloy flat tile mock-ups (1)

Mock-up	tile dimensions	Result screening	Result cycling
#1 W/WNiFe	23 * 12 * 5	up to 12 MW/m ²	100 x 10 MW/m², ok, 🗸
(4 tiles)	[mm³]	ok, 🗸	100 x 12 MW/m², ok, 🗸
	つつ * 1つ * ⊑	$12 \text{ M}/m^2$	100 x 10 MW/m², ok, 🗸
#2 vvivicu	$25^{\circ}12^{\circ}5^{\circ}$		100 x 12 MW/m², ok, 🗸
(4 tiles)		small bonding defects	

CCD image and infrared image of 100th pulse 12 MW/m² on flat tile mock-up #1.

Steady state loading of W heavy alloy flat tile mock-ups (2)

Thermal screening of both flat tile mock-ups (left figure). Mock-up #1 is equipped with W, W-Ni-Fe tiles, mock-up #2 is equipped with W-Ni-Cu tiles.

The right figure shows the low cycle fatigue loading at 12 MW/m², 10 s, of flat tile mock-up #1 equipped with W, W-Ni-Fe tiles.

D retention measurement of W-Ni-Cu

Thermal desorption deuterium release from implanted W-Ni-Fe as a function of the implanted D fluence for three implantation temperatures [H. Maier et al., Nucl. Fusion 60, 126044 (2022)]. The data for W-Ni-Cu were acquired with an implantation fluence of $10^{25} \,\mathrm{m}^{-2}$. As in the case of W-Ni-Fe, the amount of stored D in the W-Ni-Cu samples is always lower than that of the corresponding bulk W reference sample.

Conclusions

The results from the HHF tests as well as those from the complementary D retention measurements confirm the previous results on the potential of W heavy alloys as plasma-facing material.

- The cracks developed at the adiabatic loading, especially for the W-Ni-Cu alloys, do not affect the heat transfer into the material.
- No damage of the material was visible after the cyclic steady state loading. Nevertheless, the joining of the W heavy alloy tiles and the cooling structure has to be improved.
- Depending on the design of a component, a limited number of short transient events up to a temperature of about 100 K below matrix melting could be accepted.
- Cyclic steady-state operation up to 1100 °C in the case of W-Ni-Fe, respectively 900 °C for W-Ni-Cu should be achievable.
- The D retention measurement of the W-Ni-Cu material confirmed the favourable behaviour of W heavy alloys.