Status of vmec/extender-fields considering <β> and/or toroidal current for configurations

- standard
- high-iota
- high-mirror

Joachim Geiger December 5th 2023

General remarks

- The equilibria have been calculated with VMEC.
- The calculations are taken from a collection of equilibria which has evolved during the two decades.
- The coil currents are generally not the ones used in experiments, scaling needs to be performed to relate beta-values or toroidal currents to experimental conditions.
- The files are stored on a fileserver (CIFS share): //share.ipp-hgw.mpg.de/mp/fieldline/geiger/w7x (linux) \\share.ipp-hgw.mpg.de\mp\fieldline\geiger\w7x (Windows) which can be mounted.
- The fileserver can also be assessed by the fieldlinetracer webservice: See http://webservices.ipp-hgw.mpg.de/docs/fieldlinetracer.html#Grid
- The different configurations are stored in folders named with the vmec-id of the corresponding configuration.
 - Subfolders in the configuration-folders contain beta- and tor. current-sequences
 - Example:

~/geiger/w7x/1000_1000_1000_1000_+0000_+0000/01/<fields>...

Standard configuration: 1000_1000_1000_1000_+0000_+0000

- subfolder 01
 - Note: coil currents used are I_1 =...= I_5 =15kA. In experiment 2.52T imply 12985A. Hence, to scale the toroidal current values to 2.52T, multiply them with 0.8656=12985/15000, i.e. a I_{tor} =10kA correspond to an value of 8657A at 2.52T.
 - The pressure profile is a simple one: $p(s) \sim (1-s)$, s=norm. tor. flux ($\sim (r_{eff}/a_{eff})^2$
 - The current profile is a simple one: $j(s) \sim s \cdot (1-s)$
 - Suffixes:
 - xdr-files are used for EMC3 and EMC3-lite
 - txt-files are used for webservice fieldlinetracer
 - There is a readme_standard describing the contents.
 - vacuum field: fieldn_altern181x181x96.w7x.1000_1000_1000_1000_+0000_+0000.01.00jh.xdr(txt)
 - at low beta ($<\beta > \approx 0.16\%$) a toroidal current sequence from +20kA to -30kA (values not scaled!).
 - beta-scan without toroidal current up to $<\beta>\approx4.1\%$ (01.20...)
 - Note: the "m" doesn't mean much, the appended "s" indicate that the underlying vmec-calculations had a different volume, "s" signifying a smaller volume and "ss" would be again smaller, etc.. These volume studies are to check whether the underlying vmec-runs are appropriately sized.
- subfolder SCosSqSqrtS_01 (Sum of Cosines wrt Square root of "s")
 - Particular current- and beta-study investigating the use of a new toroidal current density profile.
 - Beta-range limited: up to $<\beta>\approx 0.65\%$
 - Toroidal currents also small up to 3kA.
 - Coil currents (I_1 , ..., I_5) chosen to be 13kA which is rather close to the experimental values of 12.985kA for 2.52T.
 - There are different current density profiles used for the same toroidal current specified by the suffix-labels cd01, cd02 etc.. For more details see readme.txt .

High-iota configuration: 1000_1000_1000_1000_-0690_-0690

- subfolder 01
 - Note: coil currents used are I₁=...=I₅=14814.81A & IA=IB=-10222.22A which corresponds to 2.6313T. However, in this folder is only a beta-scan.
 - The pressure profile is a simple one: $p(s) \sim (1-s)$, s=norm. tor. flux ($\sim (r_{eff}/a_{eff})^2$
 - Suffixes:
 - xdr-files are used for EMC3 and EMC3-lite
 - txt-files are used for webservice fieldlinetracer
 - There is a readme-file: readme.01.txt describing the contents.
 - beta-scan without toroidal current up to $<\beta>\approx4.3\%$ (01.20s)
 - Note: the appended "s" indicate that the underlying vmec-calculations had a different volume, "s" signifying a smaller volume.
- subfolder 02
 - Note: coil currents used are I_1 =...= I_5 =14188A & IA=IB=-9790A which corresponds to 2.52T (**only a beta-scan**).
 - The pressure profile is a more peaked one (peaking factor 3) : $p(s) \sim (1-s)^2$, s=norm. tor. flux ($\sim (r_{eff}/a_{eff})^2$
 - There is a readme-file: readme.02.txt describing the contents.
 - beta-scan without toroidal current up to $<\beta >\approx 1.35\%$ (02.09(ss))
 - Note: the appended "s" indicate that the underlying vmec-calculations had a different volume, "s" signifying a smaller volume.
 - Calculations with the suffix l8ns148 are based on extended volume calculations and should not be used for divertor investigations.
- subfolder 16
 - Note: coil currents used are I₁=...=I₅=14800A & IA=IB=-10212A which corresponds to 2.6287T. In experiment 2.52T imply 14188A. Hence, to scale the toroidal current values to 2.52T, multiply them with 0.9586=14188/14800, i.e. a I_{tor}=10kA correspond to an value of 9586A at 2.52T.
 - The pressure profile is a more peaked one (peaking factor 2) : $p(s) \sim (1-s)$, s=norm. tor. flux ($\sim (r_{eff}/a_{eff})^2$
 - There is a readme-file: readme.16.txt describing the contents.
 - beta-scan without toroidal current up to $<\beta>\approx 2.5\%$ (16.120_...))
 - toroidal current scan between -20kA and 20kA in steps of 5kA. The calculations with negative currents had not been adapted particularly since there confinement volume increases and they evolve to limiter configurations.
 - The current density profile is the most simplest one: a constant (current density), i.e. $j(s) \sim j_0$
 - Note: the volumes of the calculations with positive currents (iota-increasing) had been adapted in order to not be too large.

High-mirror configuration: 0972_0926_0880_0852_+0000_+0000

- subfolder 01
 - Note: coil currents used are I_1 =14400A, I_2 =14000A, I_3 =13333.33A, I_4 =12666.67A, I_5 =12266.67A, I_A = I_B = 0A which corresponds to 2.743T on axis at φ =0°. The folder currently contains **only a beta-scan**.
 - The pressure profile is a simple one: $p(s) \sim (1-s)$, s=norm. tor. flux $(\sim (r_{eff}/a_{eff})^2)$
 - Suffixes:
 - xdr-files are used for EMC3 and EMC3-lite
 - txt-files are used for webservice fieldlinetracer
 - There is a readme-file: readme.high-mirror.01 describing the contents.
 - beta-scan without toroidal current up to $<\beta>\approx5.3\%$ (01.24a)
 - Reminder: the assumption in generating the vmec-extender fields is, for these particular ones, a low-beta assumption. The larger the beta-values the less reliable the generated fields are.
- subfolder 02n
 - Note: coil currents are the same as for the cases in subfolder 01. The folder currently contains only a beta-scan.
 - The pressure profile is a more peaked one (peaking factor 3) : $p(s) \sim (1-s)^2$, s=norm. tor. flux ($\sim (r_{eff}/a_{eff})^2$
 - There is a readme-file: readme.high-mirror.02n describing the contents.
 - beta-scan without toroidal current up to $<\beta >\approx 1.7\%$ (02n.12)
- subfolder 04
 - Note: coil currents are the same as for the cases in subfolder 01.
 - The pressure profile is a similar to that of 01 (peaking factor ca 2) : $p(s) \sim (1-s) \cdot (1-s^4)$, s=norm. tor. flux ($\sim (r_{eff}/a_{eff})^2$ The second part in the pressure profile lets the pressure gradient vanish at the boundary (s=1).
 - There is a readme-file: readme.high-mirror.04 describing the contents.
 - beta-values range up to $<\beta>\approx 2.5\%$ (04.1214ss)
 - the toroidal currents are between -20kA and +20kA (not scaled to 2.52T!)
 - current density profile is $s \cdot (1-s)$

Equilibrium fields for divertor studies

MHD-equilibrium => VMEC

- assumes existence of flux surfaces
 - no separatrix structure, no islands
- based on energy minimization
 - small field components forming separatrix in low-shear configurations poorly resolved
- robust calculations
- easy profile handling
- field only inside VMEC-calculation domain

EXTENDER to complete field outside of **VMEC**

- use of virtual casing principle
 - outside VMEC-domain field of plasma currents
 - inside VMEC-domain field of coil currents
- combination VMEC-solution, EXTENDER-fields and field of coils (Biot-Savart) enables fields everywhere
- different combinations possible:

traditional
(VMEC-solution + extended field)
$$\vec{B}(\vec{x}) = \begin{vmatrix} \vec{B}_{vmec} & \vec{x} \in V_p \\ \vec{B}_{BS} - \vec{B}_{\sigma} & \vec{x} \notin V_p \cup \partial V_p \end{vmatrix}$$

Fields: properties & interpretation

Traditional field combination

- > consistent MHD-equilibrium inside VMEC-domain
- Flux surfaces up to VMEC-boundary
- result of fieldline tracing around VMEC-boundary depends on grid of field for calculation
 - > rectangular cyl. grid ("discretization error" at boundary \rightarrow div(**B**)- issue)
 - > flux surface like grid extension to outside (better properties, numerically more complex)

New field combination - no guarantee of good flux surfaces

- relation between field and VMEC flux surfaces broken
- > not a self-consistent equilibrium field in VMEC-domain
- > may be interpreted a "first-order correction" of the VMEC-assumption of nested flux surfaces
- better div(B)-properties at boundary for rectangular cyl. grids

Reasons for deviations

- > EXTENDER vac. field inside VMEC-domain differs from Biot-Savart-field
 - > assumption of nested flux surfaces (internal islands excluded!)
 - > finite Fourier representation
 - > numerical resolution of energy minimization (?)
 - Yac. islands in a configuration not seen by VMEC-vacuum calculation

Effects & Advantages

- > VMEC allows easy profile handling (=> net-tor. currents)
- > good flux surface region of new fields differ from VMEC-region due to
 - > different separatrix
 - > boundary island size due to β
 - > different boundary-tb due to net-toroidal currents
 - > may be used to adjust VMEC-volume more easily
- Internal flux surface topology may differ from VMEC assumption
 - rational *i*-values may lead to island formation